1) multivariable biorthogonal wavelet
多元双正交小波
2) Multivariate Orthogonal Wavelet Packets
多元正交小波包
3) biorthogonal multi-wavelets
双正交多小波
1.
For common biorthogonal multi-wavelets system,a simple definition of balancing of order is proposed,and the prefilter theory is introduced to biorthogonal multi-filter banks.
对一般的双正交多小波系统,给出了阶平衡的较为简单的定义,并将预滤波理论引入双正交多小波滤波器组。
4) biorthogonal multiwavelet
双正交多小波
1.
The application of a high approximation order biorthogonal multiwavelet in image compression;
一种高阶双正交多小波在图像压缩中的应用
2.
New image compression by biorthogonal multiwavelets;
基于双正交多小波图像压缩方法
3.
The notion of balancing is introduced to M-band biorthogonal multiwavelet system,the corresponding balanced conditions are presented,and some equivalent propositions of balanced multiscale functions are established.
将平衡多小波的概念引入到M带r重双正交多小波系统,给出了相应的平衡条件,建立了M带r重双正交多尺度函数的若干等价关系,并基于这些等价关系给出构造双正交平衡多尺度函数和多小波的算法。
5) biorthogonal multiwavelet packets
双正交多小波包
1.
A method for construction of biorthogonal multiwavelet packets with multi-scale was presented and some good properties of multiwavelet packets,which were parallel to the properties of traditional wavelet packets,were proved in this paper.
给出了双正交多小波包的构造方法,证明了多小波包对应于传统小波包的一些良好性质。
6) biorthogonal multiwavelets
双正交多小波
1.
Feature extraction and recognition of iris based on biorthogonal multiwavelets;
基于双正交多小波的虹膜特征提取与识别
2.
Construction of univariate compactly biorthogonal multiwavelets with scale a is investigated in the paper.
本文研究了一元a尺度紧支撑、双正交多小波的构造。
3.
This paper gave necessary and sufficient conditions for the existence of biorthogonal multiwavelets of dilation factor a supported in [-1,1]associated with biorthogonal scaling vectors of dilation factor a supported in [-1,1],and presented an effective procedure for their construction in the case that such multiwavelets exist.
给出了支撑区间在[-1,1]上的a尺度双正交尺度向量所对应的支撑区间在[-1,1]上的a尺度双正交多小波存在的充要条件,并且给出了其存在时的一种有效的构造方法。
补充资料:双正交系
双正交系
biorthogona! system
双正交系{bi留山呢阅习s邓tem .6味甲r一-0姗-Ma飞 一付集合州r}和!乙}(/了),其中{“1}是个(拓扑)向量空间X的元素集,毛迁是丫的(拓扑)对偶空间刃‘的儿素集,它们满足条树:~与:书、时 粼a;)二<若,。、>逻0,当t二s时,易(“)毖0‘这里火二、是藕合尤和灭‘的典范双线性型).例如.个双正交系可由一组阮hal乙日er基(s chauder basis)和义按它展开的系数所形成的集合来构成在一个有标量积、·,·、和基币。;的Hil-bert空间H中,满足条件 二氏的集合巨「:也是一组基,这甲当t二对付,众,二1,{含,笋、时,氏,二。这组基称为{a}的对偶(d喇)基、幸封月为H=H,,集合抽}和笼执形成仅正交系.特别是“中的基称为规范正交的(ortholun朋l),如果它对偶于自身. 然而,也存在甚至不形成弱基的双正交系;一个例子是在赋以范数’一f一suPI八劝{的周期连续函数空间中的函数集。‘版,其中左任Z,、任R.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条