1) almost excellent extension
几乎优越扩张
1.
Let R be a ring and S an almost excellent extension of R.
设环S是环R的几乎优越扩张。
2) almost excellent extensions
几乎优越扩张
1.
Almost Excellent Extensions and Kasch,PF-Rings;
几乎优越扩张及Kasch.PF-环
4) excellent extensions
优越扩张
1.
When R#G is excellent extensions of rings RM,give left R-moduleRM is Gorenstein module if and only if Gorenstein module of left(R#G)-module R#GM,and obtain RM and R#GM with the same Gorenstein homological dimension.
当R#G是环R的优越扩张时,给出了左R-模RM是Gorenstein模当且仅当左(R#G)-模R#GM的Goren-stein模,并得出了RM和R#GM具有相同的Gorenstein同调维数。
5) sub excellent extension
亚优越扩张
1.
It is proved that if S≥R is a sub excellent extension then S is left coherent ring if and only if R is left coherent ring.
引进环的亚优越扩张的概念 ,并证明若 S≥ R是亚优越扩张 ,则 S是左凝聚环当且仅当 R是左凝聚
6) almost asymptotically nonexpansive type mapping
几乎渐近非扩张型映象
1.
On the iterative approximation problem of fixed points for almost asymptotically nonexpansive type mappings in Banach spaces;
Banach空间中几乎渐近非扩张型映象不动点的迭代逼近问题
2.
The purpose of this paper is to study the iterative approximation problem of Ishikawa iterative sequences with random errors for almost asymptotically nonexpansive type mappings in uniformly convex Banach spaces.
研究了一致凸Banach空间中几乎渐近非扩张型映象不动点具随机误差的修正的Ishikawa迭代序列的迭代逼近问题,所得结论推广和发展了已有的相应结果。
3.
A new class of almost asymptotically nonexpansive type mappings in Banach spaces is introduced,which includes a number of known classes of nonlinear Lipschitzian mappings and non_Lipschitzian mappings in Banach spaces as special cases; for example,the known classes of nonexpansive mappings,asymptotically nonexpansive mappings and asymptotically nonexpansive type mappings.
在Banach空间中引入了一类新的几乎渐近非扩张型映象,概括了Banach空间中若干熟知的非线性的Lipschitz映象类与非Lipschitz映象类成特例;例如,熟知的非扩张映象类,渐近非扩张映象类与渐近非扩张型映象类· 考虑了用于逼近几乎渐近非扩张型映象不动点的带误差的修改了的Ishikawa迭代序列的收敛性问题· 关于Banach空间范数的S。
补充资料:极大扩张和极小扩张
极大扩张和极小扩张
maximal and minimal extensions
极大扩张和极小扩张匡.习的司出目.公油抽lex妇心.旧;MaKcl.Ma刀‘.oe H Mll.”M田.妇oe PaC山一Pe皿朋] 一个对称算子(s笋nr贺苗c opemtor)A的极大扩张和极小扩张分别是算子牙(A的闭包,(见闭算子(cfo“月。详mtor”)和A’(A的伴随,见伴随算子(呐。int opera.tor)).A的所有闭对称扩张都出现在它们之间.极大扩张和极小扩张相等等价于A的自伴性(见自伴算子(义休.adjoint operator)),并且是自伴扩张唯一性的必要和充分条件.A.H.J’Ior朋oB,B.c.lll户、MaR撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条