1) p-nilpotent radical
p-幂零根基
2) Nilpotent radical
幂零根基
1.
The automorphism group of finite_dimensional solvable complete Lie algebra whose nilpotent radical is a Heisenberg algebra over the complex field C is given.
给出了复数域C上幂零根基为Heisenberg代数的有限维可解完备李代数的自同构
2.
In this paper, the derivation algebras of splittable Lie algebras with abelian nilpotent radicals are obtained.
确定了具有交换幂零根基的可裂Lie代数的导子代数,作为推论给出了具有交换幂零根基的完备Lie代数的结构。
3.
In this paper,the authers prove that if H is a Heisenberg algebra,then there exists one and only one up to isomorphism solvable complete Lie algebra whose nilpotent radical is H,and give the realization of this kind of complete Lie algebras.
证明了给出一个Heisenberg代数H,在同构的意义下存在且仅存在一个以H为幂零根基的可解完备Lie代数,我们给出了这类完备Lie代数的具体实现,并指出当dimH>3时,这类完备Lie代数是非极大秩可解完备Lie代数。
3) p-nilpotent
p-幂零
1.
On p-nilpotent Groups and Metabelian Groups;
关于p-幂零群和亚循环群
2.
Weakly C-normal Subgroups and p-nilpotent Groups;
弱C-正规子群与p-幂零群
3.
In this paper, we study the structure of finite group G by using of the quasinormality of subgroups, condition and obtain some sufficient conditions for a group belonging to p-nilpotent groups and p-superslovable groups.
对任意有限群G,我们利用子群的S-拟正规性刻划群G的结构,给出G为p-幂零群和p-超可解群的若干充分条件。
4) p-nilpotent group
p-幂零群
1.
C-supplement subgroups are used to study the p-nilpotency of finite group and obtain two sufficient conditions of p-nilpotent group of finite group.
利用子群的c-补性定义讨论了有限群的p-幂零性,得到了有限群为p-幂零群的两个充分条件。
2.
2,we consider some abelian subgroups whose centralizers are equal to its normalizers,so we obtain some sufficient conditions of p-nilpotent groups and p-closed group.
2,通过考虑某些交换子群的中心化子—致于正规化子,得到了p-幂零群和p-闭群的若干充分条件。
3.
By use of the s-conditonal permutability of certain 2-maximal subgroups of Sylow subgroups,the sufficient conditions which enable a finite group to be ap-nilpotent group are obtained;some of the known theorems are further generalized.
利用某些2-极大子群的s-条件置换性,得到了有限群是p-幂零群的充分条件;并推广了一些已知结果。
5) p-nilpotent groups
P-幂零群
1.
In this paper,it is obtained that some necessary and sufficient conditions for p-nilpotent groups by means of the quasi-c-normality of some subgroups of a group G.
利用拟c-正规的概念给出了p-幂零群的几个充要条件。
2.
This paper assumes that every non-cyclic Sylow subgroup P of G has a subgroup D such that 1<|D|<|P| and all subgroups H of P with order |H|=|D| and with 2|D|(if P is a non-abelian 2-group and |P:D|>2) are normally embedded in G,and some sufficient conditions are obtained on G to be p-nilpotent groups and supersolvable groups.
假设对于G的每个非循环Sylow子群P有一个子群D,使得1<|D|<|P|,且P的所有阶为|D|和2|D|(若P是非交换2-群且|P:D|>2)的子群H是G的正规嵌入子群,得到G为p-幂零群以及超可解群的一些充分条件,部分结果被推广到群系。
6) p-nilpotent
p-幂零群
1.
Some Sufficient Conditions of p-nilpotent Groups and p-closed Groups;
p-幂零群和p-闭群的若干充分条件
补充资料:幂零Lie代数
幂零Lie代数
Lie algebra, nilpotent
幂零lie代数【liealgebI’a.浦训t即t;瓜朋~。代Hm明盯e6Pal 域k上满足下列等价条件之一的代数(司罗bla)g: l)有g的理想的有限降链{9.}。“、。,使得g。=g,g。={o},且对o簇i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条