1) e-Norm
e-范数
1.
A necessary and sufficient condition for the existence of C3 positive solutions are established for a superlinear singular boundary value problems of fourth order differential equations by constructing a special cone and with the e-Norm.
本文研究一类奇异超线性四阶微分方程边值问题正解的存在性,通过构造一个特殊的锥,利用e-范数得到其C3[0,1]正解存在的充分必要条件。
2) E-norm projection
E-范数投影
3) number e
数e
1.
On number e mathematics group, Department of Fundamental mathematics;
关于数e/第二重要极限的几种证明方法
4) E-convex function
E-凸函数
1.
Strong E-convex set,strong E-convex function and strong E-convex programming;
强E-凸集,强E-凸函数和强E-凸规划
2.
On level sets of E-convex function and E-quasiconvex function
有关E-凸函数和E-拟凸函数的水平集
5) e-partial derivative
e-偏导数
1.
In order to discuss the properties of Bent Function based on e-partial derivative and relationship of Bent Function and linear Function,the paper proposed a relatively simple algorithm no matter whether the Boolean Function is Bent Function or not.
为讨论Bent函数性质的需要,在研究了线性函数与Bent函数关系及e-偏导数的密码学性质的基础上,本文提出了一种判断布尔函数是否为Bent函数较容易的算法。
6) E-convex functions
E-凸函数
1.
Some new properties of their E-convex functions are discussed on the basis of the former researches,and their applications in optimization are researched,some of established Conclusions expanded,these functions perfected.
在已有研究基础上,对几类E-凸函数进行了研究,得出了它们的一些新性质,并研究了它们在最优化问题中的应用,推广了以前的部分结论,完善了这几类非凸函数。
2.
Recently a new criterion of quasi-semi-E-convex functions was introduced by Peng in 2006 for a new criterion of quisi-semi-E-convex functions.
最近,彭在文献[1]中提出了关于拟半E-凸函数的一个判别准则。
补充资料:Luxemburg范数
Luxemburg范数
Luxemburg nonn
L峨曰血叱范数〔I一血叱~;J如盆c服6yP住肋p-Ma] 函数 ,‘x!.(M,一、{*:*>o,丁、(,一’x(:))‘:‘1}, G这里M(u)是关于正的u递增的偶凸函数, 怒“一’M(u)一忽u(M(u))一,一0,对“>0,M(“)>0,且G是R”中的有界集.此范数的性质曾由W.A.J.h以油比飞〔11作了研究.L~b鸣范数等价于O正ez范数(见0口厄空间(C旧允2 sP创芜)),且 I{x}I(,)簇1 lx}I,蕊2 11 x 11(、).如果函数M(u)和N(u)是互补(或互为对偶)的(见O市口类(Or比zc地”‘、则 ,,·,,(一sun{)·(!,,‘!,“!:,,,,,《一‘,}·如果z‘(t)是可测子集E CG的特征函数,则 !l:二11‘M、-一下尖二一. ““启”‘川M一’(l/n篮‘E)’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条