说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 幂零指数
1)  nilpotent index
幂零指数
1.
In this paper, the author researches the linear relation defined by a same nilpotent index in the independent vectors, obtains the distribution rule of the nilpotent indices on an arbitrary basis.
研究了线性无关的向量组在同一级幂零指数上的线性关系,得到幂零指数在线性空间的基向量上的分布规律。
2)  nilpotency index
幂零指数
1.
Further, the nilpotency index of Jordan block is defined.
其次 ,当 (n ,g) =1时 ,给出了n级奇异g 循环矩阵相似于某些对角阵和某些幂零Jordan块的直和 ,进一步给出了其中幂零Jordan块的幂零指数的计算
3)  index of nilpotency of ideal
理想的幂零指数
4)  Nilpotent Index
幂零指标
1.
A Characterization of Nilpotent Index over Some Nilpotent Matrices;
一类幂零矩阵幂零指标的特征
5)  nilpotent algebra
幂零代数
1.
It is proved that there exists a basis of linear space V with dimension n under which the matrix of every element of nilpotent algebra N generated by nilpotent linear transformations of V is a strictly upper triangular matrix.
用T(n,F)表示数域F上全体n阶严格上三角矩阵作成的幂零结合代数,证明了对于n维线性空间V,必存在V的一组基使得由V的幂零线性变换生成的幂零代数N中任意元素在该基下的矩阵均为严格上三角矩阵;由V的幂零线性变换生成的最大的幂零代数均同构于T(n,F)。
6)  power law exponent
幂律指数
1.
Determination of the power law exponent of polymer solution in condition of oil reservoir;
油藏条件下聚合物溶液幂律指数的确定
2.
The influence of Weissenberg number and power law exponent on the flow field is analyzed .
研究表明,在扩张流道中,随着幂律指数的逐渐增大,速度等值线逐渐向凹角内伸展,流动区域增大;随着粘弹性的增强,流体的波及体积增加,波及效率增大。
3.
The influence of Weissenberg number and power law exponent (n) on the flow field is analyzed.
在凹槽流道中,随着幂律指数的逐渐增大,速度等值线逐渐向凹角内伸展,流动区域增大;随着黏弹性的增强,流体的波及体积增加,波及效率增大。
补充资料:幂零Lie代数


幂零Lie代数
Lie algebra, nilpotent

幂零lie代数【liealgebI’a.浦训t即t;瓜朋~。代Hm明盯e6Pal 域k上满足下列等价条件之一的代数(司罗bla)g: l)有g的理想的有限降链{9.}。“、。,使得g。=g,g。={o},且对o簇i1,则其换位子理想的余维数codim【g,g」》2.特别地,如果dinlg簇2,则g是交换的.唯一的非交换的三维幂零Lie代数g同构于n(3k).对于几个小维数(当k=C,对于dinig续7)幂零Lie代数已经开列出来,但仍然没有它们分类的一般途径(1989). 幂零Lie代数(早期,它们被称为特殊Lie代数(51不戈诫Liea】罗b几璐)或O阶Lie代数)在5 .Lie关于微分方程积分方法研究的第一阶段就已经遇到了.可解lie代数(L记al罗bra,501铂b】e)的分类在一定意义下归结为枚举幂零Lie代数.在任意有限维Lie代数中都有一个最大的幂零理想(【21的术语,诣零根(成mdical)).另一个幂零理想也被考虑了—不可约的有限维表示的核的交集(幂零根,亦见lie代数的表示(rePn乏ellta-tion of a Lie algebm))(见【11,【4」).如果r是代数g的根,则幂零根n与 汇g,:]=[g,g]自r重合.商代数g/n是约化的(见约化块代数(玩司罗-腼,阁ucti祀)),并且n是有此性质的最小的理想.如果chark=O,则诣零根由所有使得adx幂零的x〔T组成. 研究C上约化Lie代数g,自然提出幂零子代数,它们是抛物子代数(parabelic su加】罗bra)的幂零根.当g=gI(V)时,这些幂零子代数与上面考虑过的子代数n(F)重合.9的一个Borel子代数(见Borel子群(Borel subgrouP))是g的一个由幂零元组成的极大子代数,不计共扼意义下是唯一的.更广的一类幂零L记代数由g的抛物子代数的由幂零元素组成的任意理想形成.当g=叭(V)时,这些幂零Lie代数已在【6]中被分类〔标准诣零代数〔standa记nila」geb闭)),而一般情形下在【7」中. 一个幂零Lie代数的中心必是非平凡的,而任意一个幂零Lje代数均可由幂零代数的中心扩张列得到.幂零Lie代数类关于子代数、商代数、中心扩张、有限直和是封闭的.特别地,n(n,k)的任意子代数是幂零的.反之,任意一个有限维幂零Lie代数必然同构于n(m,k)的一个子代数,对某个m(如果chark=0);这是八d。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条