1) the evolution of landforms and environment
地貌与环境演化
1.
Xu Xiake,a great geographer in the end of Ming,took research on the evolution of landforms and environment earliest.
对其地貌与环境演化研究最早可追溯到明末大地理学家徐霞客。
2) landform evolution
地貌演化
1.
Landform evolution in the south was earlier.
Strahler)提出的面积-高程分析法为基础,在MapGIS单一系统下研究了湟水流域的地貌演化过程。
2.
The difference between landform evolution of Xingzihe basin and Davis s model is that because there were three times endogenic uplift action on Qut.
杏子河地貌演化与戴维斯(Davis)模型的不同点是地貌未达准平原,就有内营力抬升作用,结果使地貌长期处于非平衡态。
3) geomorphological evolution
地貌演化
1.
This special geomorphological evolution result will greatly influence the stability of submarine pipeline and bottom-sited platform; it should be pay more attention in designing and constructing of submarine structures.
三角洲特殊的地貌演化结果对海底管线、座底式平台稳定造成很大危害,在构筑物设计和施工过程中应予以重视。
2.
Sediment dynamic and environment research in Minjiang estuary was summarized in this paper from four aspects:Minjiang estuary delta geomorphological evolution,sediment dynamic and sediment transport,division of sedimentary environments,as well as salt and fresh water mixing.
本文比较系统的综述了闽江河口沉积动力环境方面已做过的研究工作,根据取得的成果从闽江河口三角洲的地貌演化、沉积动力和泥沙运移、沉积环境分区和盐、淡水混合四个方面进行了总结,并对当前研究工作所存在的问题进行了分析,提出了今后的重点研究方向。
4) landforms evolution
地貌演化
1.
Water and soil loss is an important landforms evolution course.
水土流失其实是一种主要的侵蚀地貌演化过程。
5) geomorphic evolution
地貌演化
1.
The geomorphic evolution was discussed based on the sedimentary features and the correlation of the Late Cenozoic stratums.
在对研究区进行了地貌分区的基础上 ,探讨了研究区的地貌演化特征 ,并进行了研究区的晚第三纪地层对比。
2.
According to the record of eolian & lake deposit and their chronology date in the northern Ulan Buh Desert in the Holocene, it is stated that Ulan Buh Desert s process of geomorphic evolution in the Holocene can be divided into 4 stages: (1) Lake Geomorphy stage in Q_3~3-Q_4~1.
根据对乌兰布和沙漠北部地区全新世风沙和湖泊沉积记录及其沉积时代进行分析,认为全新世以来,乌兰布和沙漠北部地区地貌演化经历了4个主要的发育时期:Q33~Q41湖泊地貌发育时期,Q41风沙地貌发育时期,Q42湖(河)(屠申泽)地貌发育时期和Q43风沙地貌发育时期。
补充资料:环境演化
地球环境由大气圈、水圈、岩石圈(土壤-岩石圈)和生物圈所组成,在地球史上它们是逐步地,相继地发生、发展和形成的。
地球年龄约为46亿年。地球的初始状态已被随后的地质变迁所涂抹,很难辨认。然而根据地球上一些惰性气体含量与其宇宙丰度之比是如此之小,有理由认为地球形成时的气体大部分已经逃逸了。最初的地球不会有象样的大气圈,今日的大气圈是后来形成的。
最初的地球经历着原子演化过程。地壳内部大量放射性元素进行裂变和衰变。这个过程所释放能量的积聚和迸发,陨星对地表的频繁撞击,以及可能由于月球被地球捕获时而引起的潮汐摩擦力等,都会导致地壳火山的强烈活动,使得被禁锢在地壳内部的挥发性物质不断喷发出来,形成一个主要成分有水、一氧化碳(CO)、二氧化碳 (CO2)和氮等组成的还原大气圈。水汽冷凝后在低处汇聚成为海洋。
早期的地表环境没有氧气,更没有臭氧层,这就使得高能紫外线能够无阻碍地直射地面。50年代以来的一系列人工模拟实验,证实在高能紫外线辐射下还原大气圈的气体成分可以合成为简单的有机化合物,成为生命发生的最基本材料。这些非生物合成的有机小分子在原始海洋汇聚起来,经历了漫长的过程,逐渐形成生命前体,最后演化为原始生命。
已发现的最古老的生物化石是原始菌藻类,其年代约为34亿年前。最早的生命是异养的,又是厌氧的。它们以原始海洋中有机分子为养料,依靠无氧的发酵方式获得能量。原始海洋供应的养料有限,因而一些能合成无机养分为有机质的自养生物,例如能在光合作用下把水和二氧化碳合成有机质的蓝绿藻出现了(距今约27亿年)。绿色植物在光合作用中释放出游离氧,逐渐改变了大气的成分。大气氧的形成是地球环境演化史上一次最重大的变化。
游离氧的出现,促进了生命的进化,这就是真核细胞的出现(距今10~15亿年),即在生物进化史上出现了有性繁殖和多细胞的生物。生物更为多样化。
大气氧的出现,改变了地球化学过程和岩石圈的成分。在放氧的光合作用未发生前,地球表面是缺氧环境,化学元素以还原状态存在。随着游离氧的释放,这些元素从还原态转变为氧化态。例如原来在地表水和海水中大量存在的还原态铁(低价铁),被氧化为氧化态的高价铁;硫化物被氧化为硫酸盐。这些氧化物的出现反映在前寒武纪的古老岩石上。最古老沉积岩中的带状铁质夹层(距今18~22亿年),稍晚的陆相红层以及前寒武纪晚期出现的巨厚硫酸钙沉积,都证明大气氧浓度的不断提高。
与铁、硫被氧化的同时,大量还原性碳转化为 CO2,增加了海水中HCO婣和CO卲的浓度,产生碳酸盐沉积,形成前寒武纪晚期的石灰岩和白云岩。到了寒武纪,含钙外壳的后生动物在海水中大量出现,生物开始直接参与地质大循环。此后,海洋中的碳酸钙沉积,几乎都是含钙有机体的产物。
随着大气氧浓度的增加,在大气层中形成臭氧层。臭氧层的形成对生命的保护有极重大的意义,因为它能遮断危害生命的高能紫外辐射。最初生命只能在紫外线照射不到的水下5~10米深处发育,随着臭氧层的保护能力的不断提高,生命发展到水体表层,进而由水面发展到陆地(志留纪晚期,距今约4.2亿年)。
生命在陆上出现,进化极为迅速。这是因为陆地具有更多样的生态环境,促使生物的分化和变异。生物之间的相互依存、相互制约和相互竞争的关系,也推动了生物的进化,生态系统结构也就愈来愈复杂。
石炭纪是地球上植物空前繁茂的时代。大量植物残体在沼泽环境转化为煤层,免于氧化,致使大气中二氧化碳平衡失调,削弱了温室效应,引起全球性气温降低。古生代晚期出现的大冰期可能与此有关。
陆上植物的出现,产生了土壤层。土壤是植物与岩石相互作用的产物。土壤的形成使易于淋失的养分在地表上富集起来,从而保证了生物圈的发展和繁荣。土壤和植物是一个反馈系统。随着植物的进化,土壤肥力相应提高,土壤肥力的提高反过来又促进植物的进化。在针叶林下发育的土壤是肥力较低的灰化土,在草本植物下则是肥力很高的黑土。动物界的进化又同植物界进化密切关联。例如随着有花植物的出现,产生授粉昆虫(白垩纪)。随着草本植物的出现,产生有蹄动物(第三纪)。可以设想,如果没有营养丰富的少数几种禾木科、豆科植物,人类的进化也是不可能的。
地球环境在地球历史上经历了许多次巨大的变动。例如因太阳辐射变动引起气候变化,因地壳运动产生火山喷发,造山和造陆运动,以及大陆漂移。这些变化产生的影响是全球性的。特别是大陆漂移,从根本上改变了全球环境格局,使海陆分布、大洋盆地、风系和洋流都发生根本性的改变。生物屏障的建立(大陆分离)或打破(大陆连结),对生物的地理分布和进化都产生深远影响。环境的剧烈变化,使许多生物死亡和灭绝(例如中生代的大型爬行动物),幸存的在新环境下突变为新种。
现代全球环境的形成大概是在新生代开始的。在中生代中期和晚期,世界大部分地区都是属于热带和亚热带气候,季节性变化小。到了新生代,随着现代山系如阿尔卑斯山和喜马拉雅山的隆起,发生世界性的气候变化。气候带形成了,季节交替显著了。地球环境向着更多样化方向发展。现代的全球生态系统,包括木本和草本的被子植物、哺乳类、鸟类以及种类繁多的昆虫大约是在第三纪形成的。这个生态系统经过第四纪的严酷考验基本上稳定下来了。
从环境系统演化历史来看,生命的发展对环境的进化有极重大的作用。生命与环境是共同进化的,永远不会停留在一个水平上。
随着科学技术不断发展,人类活动对环境演化的影响愈来愈大。例如人类大规模地毁坏天然植被,消灭野生动物,把复杂的多种多样的天然生态系统转变为简单的单一作物和少数几种驯养动物的人为农牧生态系统。尽管这种转变带来了一系列生态问题,但它大大地提高了生产水平,赡养了更多的人口。人类为了获得发展和不断提高生活水平,今后仍将不断改造自然,改变环境,但人类必须注意与环境保持协调,在破坏旧平衡的同时,建立新的平衡,创造一个新的更为美好的环境。这就是当前环境科学研究的核心内容。
参考书目
R.N.T-W-Fiennes, Ecology and Earth History,Croom Helm Ltd.,London,1976.
地球年龄约为46亿年。地球的初始状态已被随后的地质变迁所涂抹,很难辨认。然而根据地球上一些惰性气体含量与其宇宙丰度之比是如此之小,有理由认为地球形成时的气体大部分已经逃逸了。最初的地球不会有象样的大气圈,今日的大气圈是后来形成的。
最初的地球经历着原子演化过程。地壳内部大量放射性元素进行裂变和衰变。这个过程所释放能量的积聚和迸发,陨星对地表的频繁撞击,以及可能由于月球被地球捕获时而引起的潮汐摩擦力等,都会导致地壳火山的强烈活动,使得被禁锢在地壳内部的挥发性物质不断喷发出来,形成一个主要成分有水、一氧化碳(CO)、二氧化碳 (CO2)和氮等组成的还原大气圈。水汽冷凝后在低处汇聚成为海洋。
早期的地表环境没有氧气,更没有臭氧层,这就使得高能紫外线能够无阻碍地直射地面。50年代以来的一系列人工模拟实验,证实在高能紫外线辐射下还原大气圈的气体成分可以合成为简单的有机化合物,成为生命发生的最基本材料。这些非生物合成的有机小分子在原始海洋汇聚起来,经历了漫长的过程,逐渐形成生命前体,最后演化为原始生命。
已发现的最古老的生物化石是原始菌藻类,其年代约为34亿年前。最早的生命是异养的,又是厌氧的。它们以原始海洋中有机分子为养料,依靠无氧的发酵方式获得能量。原始海洋供应的养料有限,因而一些能合成无机养分为有机质的自养生物,例如能在光合作用下把水和二氧化碳合成有机质的蓝绿藻出现了(距今约27亿年)。绿色植物在光合作用中释放出游离氧,逐渐改变了大气的成分。大气氧的形成是地球环境演化史上一次最重大的变化。
游离氧的出现,促进了生命的进化,这就是真核细胞的出现(距今10~15亿年),即在生物进化史上出现了有性繁殖和多细胞的生物。生物更为多样化。
大气氧的出现,改变了地球化学过程和岩石圈的成分。在放氧的光合作用未发生前,地球表面是缺氧环境,化学元素以还原状态存在。随着游离氧的释放,这些元素从还原态转变为氧化态。例如原来在地表水和海水中大量存在的还原态铁(低价铁),被氧化为氧化态的高价铁;硫化物被氧化为硫酸盐。这些氧化物的出现反映在前寒武纪的古老岩石上。最古老沉积岩中的带状铁质夹层(距今18~22亿年),稍晚的陆相红层以及前寒武纪晚期出现的巨厚硫酸钙沉积,都证明大气氧浓度的不断提高。
与铁、硫被氧化的同时,大量还原性碳转化为 CO2,增加了海水中HCO婣和CO卲的浓度,产生碳酸盐沉积,形成前寒武纪晚期的石灰岩和白云岩。到了寒武纪,含钙外壳的后生动物在海水中大量出现,生物开始直接参与地质大循环。此后,海洋中的碳酸钙沉积,几乎都是含钙有机体的产物。
随着大气氧浓度的增加,在大气层中形成臭氧层。臭氧层的形成对生命的保护有极重大的意义,因为它能遮断危害生命的高能紫外辐射。最初生命只能在紫外线照射不到的水下5~10米深处发育,随着臭氧层的保护能力的不断提高,生命发展到水体表层,进而由水面发展到陆地(志留纪晚期,距今约4.2亿年)。
生命在陆上出现,进化极为迅速。这是因为陆地具有更多样的生态环境,促使生物的分化和变异。生物之间的相互依存、相互制约和相互竞争的关系,也推动了生物的进化,生态系统结构也就愈来愈复杂。
石炭纪是地球上植物空前繁茂的时代。大量植物残体在沼泽环境转化为煤层,免于氧化,致使大气中二氧化碳平衡失调,削弱了温室效应,引起全球性气温降低。古生代晚期出现的大冰期可能与此有关。
陆上植物的出现,产生了土壤层。土壤是植物与岩石相互作用的产物。土壤的形成使易于淋失的养分在地表上富集起来,从而保证了生物圈的发展和繁荣。土壤和植物是一个反馈系统。随着植物的进化,土壤肥力相应提高,土壤肥力的提高反过来又促进植物的进化。在针叶林下发育的土壤是肥力较低的灰化土,在草本植物下则是肥力很高的黑土。动物界的进化又同植物界进化密切关联。例如随着有花植物的出现,产生授粉昆虫(白垩纪)。随着草本植物的出现,产生有蹄动物(第三纪)。可以设想,如果没有营养丰富的少数几种禾木科、豆科植物,人类的进化也是不可能的。
地球环境在地球历史上经历了许多次巨大的变动。例如因太阳辐射变动引起气候变化,因地壳运动产生火山喷发,造山和造陆运动,以及大陆漂移。这些变化产生的影响是全球性的。特别是大陆漂移,从根本上改变了全球环境格局,使海陆分布、大洋盆地、风系和洋流都发生根本性的改变。生物屏障的建立(大陆分离)或打破(大陆连结),对生物的地理分布和进化都产生深远影响。环境的剧烈变化,使许多生物死亡和灭绝(例如中生代的大型爬行动物),幸存的在新环境下突变为新种。
现代全球环境的形成大概是在新生代开始的。在中生代中期和晚期,世界大部分地区都是属于热带和亚热带气候,季节性变化小。到了新生代,随着现代山系如阿尔卑斯山和喜马拉雅山的隆起,发生世界性的气候变化。气候带形成了,季节交替显著了。地球环境向着更多样化方向发展。现代的全球生态系统,包括木本和草本的被子植物、哺乳类、鸟类以及种类繁多的昆虫大约是在第三纪形成的。这个生态系统经过第四纪的严酷考验基本上稳定下来了。
从环境系统演化历史来看,生命的发展对环境的进化有极重大的作用。生命与环境是共同进化的,永远不会停留在一个水平上。
随着科学技术不断发展,人类活动对环境演化的影响愈来愈大。例如人类大规模地毁坏天然植被,消灭野生动物,把复杂的多种多样的天然生态系统转变为简单的单一作物和少数几种驯养动物的人为农牧生态系统。尽管这种转变带来了一系列生态问题,但它大大地提高了生产水平,赡养了更多的人口。人类为了获得发展和不断提高生活水平,今后仍将不断改造自然,改变环境,但人类必须注意与环境保持协调,在破坏旧平衡的同时,建立新的平衡,创造一个新的更为美好的环境。这就是当前环境科学研究的核心内容。
参考书目
R.N.T-W-Fiennes, Ecology and Earth History,Croom Helm Ltd.,London,1976.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条