1) ultra-low velocity zone(ULVZ)
超低速层
2) underspeed/overspeed
低速/超速
3) Ultra-low speed
超低速
1.
H-Infinity Control for a super inertia, ultra-low speed and high precision servo System;
大惯量超低速高精度伺服系统的H∞控制
2.
In this paper,an ultra-low speed elevation system,with PLC used for controlling,is introduced.
本文介绍了基于PLC控制的超低速升降系统,该系统采用组态软件实现与PLC、变频器等控制器的远程通讯,以实现对工业现场的实时控制。
3.
This paper introduces the principle of the closed hydraulic system of the logging truck,especially the structure principle of the ultra-low speed valve.
介绍了油田测井绞车闭式液压系统原理,并着重介绍超低速阀的结构原理,新设计液压系统中采用了超低速阀,满足了测井车超低速测井工况。
4) super low speed
超低速
1.
The principle,constitution and realization of aerospace digital super low speed high accuracy servo system based on direct torque control of rare earth permanent magnet external-rotor slotless brushless sinusoidal torque motor are analyzed and explored.
阐述了基于外转子稀土永磁正弦波无槽无刷力矩电机直接转矩控制的数字式超低速高精度伺服系统的工作原理、系统构成、控制策略和功能实现。
2.
The super-low-speed servo system we designed is about the same as MAPS in super low speed but is an order of magnitude better than MAPS in tracking precision.
提出并阐述了基于外转子稀土永磁正弦波无槽无刷力矩电机直接转矩控制的数字式超低速高精度伺服系统的总体方案、工作原理、控制策略和功能实现。
3.
Based on special demands of super low speed high accuracy servo system, the thesis analyzes and explores the mathematical model, design method, key technology of brushless slotless sinusoidal motor.
根据超低速高精度伺服系统运行的特殊要求 ,文中对无槽无刷正弦波电机的数学模型、设计方法、关键技术等进行了分析探讨。
5) ultra low velocity zone
超低速区
1.
These extreme anomalies are named ultra low velocity zones(ULVZ),and are best model.
而D″层的底部零落散布着厚5~60 km,横向尺度200~300 km,剪切波(Vs)速异常可达-30%,压缩波(Vp)异常达-10%和密度异常可达+10%的异常体,称为超低速区(ultra low velocity zone,ULVZ)。
6) low supersonic
低超声速
1.
Based on the flow pattern stniccure obtained from free flight experiments, a method of solving the low supersonic, high Revnolds numbers separated flow problem is proposed in this paper by which the inviscid region of the afterbody flowfield of a sphere has been simulated numerically.
本文根据圆球跨声速自由飞行实验的流谱结构,建立了低超声速圆球分离流动的流动模型,它成功地计算了考虑粘性分离影响的圆球绕流的后体流场。
补充资料:超短波电离层传播
波长为10~1米(相应频率为30~300兆赫)的电波经电离层的传播。电离层一般不能反射频率为30兆赫以上的无线电波;只有在太阳黑子高年低纬度电离层和电离层出现较强Es层时,超短波才能被反射。因此,超短波电离层传播有透射传播(图1)和散射传播(图2)等两种主要形式。 人们认识超短波电离层传播是从散射传播开始的。30年代初,提出了电离层中存在着大小不等的不均匀电离团块的概念,从理论上解释了在"寂静区"中收到电波信号这一现象的原因。第二次世界大战前后,对雷达干扰源的研究表明,干扰源与流星电离和极光的出现有关。因此,对流星余迹电波散射和无线电极光散射进行了广泛的研究,从而导致50年代出现流星电离余迹"间歇"通信方式。
自1950年H.G.布克和W.E.戈登提出超短波对流层散射传播理论以后,P.K.贝利等人使用大功率发射机和高灵敏度接收机进行电离层超短波散射传播,建立了超短波、超视距、低电离层散射通信电路,通信频率约为30~60兆赫。这种散射机理是利用 85~100公里高度的电离层不均匀体的散射作用,比对流层散射的散射体高度高得多,通信距离为1000~2000公里,比对流层散射通信距离远得多,适于跨国或岛间通信。这种通信方式与短波通信相比,其最大特点是不受电离层扰动的影响,尤其适合高纬度地区和跨极光区使用。但通信容量低,一般只能通一路电话或四路移频电报,而且与短波设备相比体积庞大,费用昂贵。
1957年人造地球卫星发射成功。它能用超短波电离层透射传播方式,作为空间飞行体与地面通信联系的重要通道。这一传播方式具有空间飞行体遥测遥控系统所需要的理想的频率窗口。同时,又为电离层探测研究提供了新的手段。
电波通过电离层的折射与工作频率有关,工作频率越高,折射效应越小。为了保证对空间飞行体的高精度的定位跟踪,必须对定位跟踪系统测量的距离、距离变化率、仰角和方位角等参数的大气折射误差进行修正。
电离层是磁等离子体,也是随机不均匀介质。超短波无线电波通过电离层时,其极化面会发生旋转(即法拉第效应),也会出现振幅衰落、振幅相位闪烁、多普勒频移和频谱加宽等现象。这些现象对通信和导航都产生不利影响。超短波导航卫星使用两个相干的频率以消除电离层介质的多普勒频移,从而能提高导航精度。但是,电离层法拉第偏振仪、多普勒干涉仪和大功率雷达非相干散射探测等则是利用这些效应和现象来研究电离层本身的。因此,超短波电离层传播,也是电离层无线电探测研究的重要方式之一。
自1950年H.G.布克和W.E.戈登提出超短波对流层散射传播理论以后,P.K.贝利等人使用大功率发射机和高灵敏度接收机进行电离层超短波散射传播,建立了超短波、超视距、低电离层散射通信电路,通信频率约为30~60兆赫。这种散射机理是利用 85~100公里高度的电离层不均匀体的散射作用,比对流层散射的散射体高度高得多,通信距离为1000~2000公里,比对流层散射通信距离远得多,适于跨国或岛间通信。这种通信方式与短波通信相比,其最大特点是不受电离层扰动的影响,尤其适合高纬度地区和跨极光区使用。但通信容量低,一般只能通一路电话或四路移频电报,而且与短波设备相比体积庞大,费用昂贵。
1957年人造地球卫星发射成功。它能用超短波电离层透射传播方式,作为空间飞行体与地面通信联系的重要通道。这一传播方式具有空间飞行体遥测遥控系统所需要的理想的频率窗口。同时,又为电离层探测研究提供了新的手段。
电波通过电离层的折射与工作频率有关,工作频率越高,折射效应越小。为了保证对空间飞行体的高精度的定位跟踪,必须对定位跟踪系统测量的距离、距离变化率、仰角和方位角等参数的大气折射误差进行修正。
电离层是磁等离子体,也是随机不均匀介质。超短波无线电波通过电离层时,其极化面会发生旋转(即法拉第效应),也会出现振幅衰落、振幅相位闪烁、多普勒频移和频谱加宽等现象。这些现象对通信和导航都产生不利影响。超短波导航卫星使用两个相干的频率以消除电离层介质的多普勒频移,从而能提高导航精度。但是,电离层法拉第偏振仪、多普勒干涉仪和大功率雷达非相干散射探测等则是利用这些效应和现象来研究电离层本身的。因此,超短波电离层传播,也是电离层无线电探测研究的重要方式之一。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条