1) asymptotic property
渐进性质
1.
This paper deals with the asymptotic property on the middle point of the mean value theorem according to a exercise by using the Taylor formula.
本文从一道习题谈起,利用泰勒公式,讨论中值定理中值点的渐进性质。
2.
Proved the asymptotic property for generalized Poisson Integral in a half-plane,this improved some classical results about harmonic functions in a half-plane.
对于半平面中的一类推广Poisson积分得到了其渐进性质,推广了某些经典的结果。
3) necrobiosis lipoidica
类脂质渐进性坏死
4) asymptotic behavior
渐进性
1.
Oscillatory and Asymptotic Behaviors of Third Order Nonlinear Delay Differential Equation with Impulse
三阶非线性脉冲时滞微分方程的振动性与渐进性
2.
Oscillatory and asymptotic behavior of solutions for a class delay difference equations
一类时滞差分方程解的振动性和渐进性
3.
In this paper,the oscillation and asymptotic behavior of solutions for the nonlinear delay differential equations:[a(t)h(x(t))x (t)] +p(t)x (t)+q(t)f(x(σ(t)))=0,t≥T_0 and[a(t)h(x(t))x (t)] +p(t)x (t)+q(t)f(x(σ(t)))=e(t), t≥T_0 are studied.
主要研究非线性时滞微分方程[a(t)h(x(t))x'(t)]'+p(t)x'(t)+q(t)f(x(σ(t)))=0,t≥T_0和[a(t)h(x(t))x'(t)]'+p(t)x'(t)+q(t)f(x(σ(t)))=e(t),t≥T_0解的振动性和渐进性。
5) Gradualness
渐进性
1.
Inevitability and Gradualness of Scale Management of Agriculture in China;
我国实行农业规模经营的必然性和渐进性
2.
On the Gradualness & Phase of Enterprises Independent Innovation;
论企业自主创新的渐进性与阶段性
3.
On the Gradualness of the Building of Service-oriented Government: Based on the Gradual Model;
服务型政府建设的渐进性——基于渐进模型上的分析
6) asymptotic property
渐进性
1.
This article introduces the existing rdults of asymptotic property research in the Mean Mid-value in Cauchy Theorem, puts forward and proves a more general conclusion which makes the existing results a special case.
文章介绍了Cauchy中值定理中值点的渐进性已有的研究结果,给出了更一般性的结论,并给予证明,使得已有的结果成为特例。
2.
The asymptotic property of the intermediate value in the second mean value theorem is researched.
研究了积分第二中值定理"中间点"的渐进性,即随着区间长度无限地缩短,"中间点"越来越趋向于区间的中点。
补充资料:部分渐进学习
部分渐进学习
progressing partial learning
都分渐进学习〔progres、,n名p“T畜,a】lear币雌)运动技能学习和练习的一种方式先学习并练习某项枯能的木别成分,再学习一个新的成分,同时将先后学习过的成分放在一起练习,如此学完整项运动技能。适用于那些既可分解又相互联系、由许多动作成分构成的运动技能的学习。 (蒋兆灿撰丰文博审)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条