1) Logarithmic Convex Fuzzy Mappings
对数凸模糊映射
2) convex fuzzy mappings
凸模糊映射
1.
This note is to give some properties for convex fuzzy mappings and quasi-convex fuzzy mappings, and discuss some applications to a class of convex fuzzy optimizations.
本文讨论了一些凸模糊映射与拟凸模糊映射的性质及其在凸模糊优化的应用 。
3) strictly convex fuzzy mapping
严格凸模糊映射
1.
Based on refrence,the relationship between convexity and strict convexity of fuzzy mapping is discussed and the result that convex fuzzy mapping is the sufficient condition for strictly convex fuzzy mapping is obtained.
在已有文献的基础上,讨论了模糊映射的凸性和严格凸性之间的关系,得到了凸模糊映射为严格凸模糊映射的充分条件。
4) weak convex fuzzy mapping
弱凸模糊映射
1.
It points out that a strong convex fuzzy mapping is a weak convex fuzzy mapping; and a convex mapping must be a strong convex fuzzy mapping,and if a general mapping is a weak convex fuzzy mapping,it must be a convex mapping.
在两个凸集之间引入了弱凸模糊映射和强凸模糊映射的概念。
5) strong convex fuzzy mapping
强凸模糊映射
1.
The concepts of weak convex and strong convex fuzzy mapping are introduced between two convex sets.
在两个凸集之间引入了弱凸模糊映射和强凸模糊映射的概念。
6) quasi-convex fuzzy mappings
拟凸模糊映射
1.
This note is to give some properties for convex fuzzy mappings and quasi-convex fuzzy mappings, and discuss some applications to a class of convex fuzzy optimizations.
本文讨论了一些凸模糊映射与拟凸模糊映射的性质及其在凸模糊优化的应用 。
2.
Based on the concepts put forward by Motilal Panigrahi,discussion is made on the relationship between the quasi-convex fuzzy mappings,strict quasi-convex fuzzy mapping and strong quasi-convex fuzzy mapping.
基于由Motilal Panigrahi提出的拟凸模糊映射、严格拟凸模糊映射和强拟凸模糊映射的概念,深入讨论了三者之间的相互关系,分析了三种映射互相转化的条件及如何削减某些凸性规划条件和简化模糊规划问题。
补充资料:对数凸性
对数凸性
convex! t>.logarithmic
对数凸性(伽ve劝ty,l呢arithmic;.b.叩目阅‘.‘JJa.叫.M“-,恻翻〕 定义在区间上非负函数了的下述性质:若对j一区间中任意两点.、.与x,以及满足p十pZ二!的丁r意数P)O,P:>O,不等式 加!x,+p之x之)嘱、尸‘(x,)尸2(一、:)成立,则称.厂为对攀0妙门卿rithmlolls onVe、)瑕如一个函数是对数凸的,那么它或者恒等于0或者是严格正的且Inf为凸函数(实变量的)(eonVex几,netion(of a real variable)).几』飞Ky叩,l,x爬B撰卜斯宙译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条