1) fixed-point algebra
固定点代数
1.
The quiver automorphism of the quiver (Q*,I*) is determined by the quiver automorphism of (Q, I); the Frobenius morphism of D(A) is determined by the Frobenius morphism of A; the fixed-point algebra of D(A) is isomorphisic to the tensor of the fixed-point algebra of A and the fixed-point algebra of Aop.
本文证明:带关系箭图(Q*,I*)的自同构由带关系箭图(Q,I)的自同构决定;D(A)的Frobenius态射由A的Frobenius态射完全决定;代数D(A)的固定点代数同构于相应的代数A的固定点代数与A°P的固定点代数的张量积,特别地,当Q为单的箭图时,代数D(A)的固定点代数同构于代数A的固定点代数的对偶扩张代数。
2) fixed-point iteration
固定点迭代
1.
Newton iteration method for nonlinear equations in two unknowns has also been expressed as a basic iteration form with simplified ideological structure and convenient form which is called fixed-point iteration.
并将二元非线性方程组的牛顿法表示成了结构形式简明、便捷的基本迭代形式-固定点迭代。
3) invariable vertex numbers
节点数固定
1.
One is the complex networks with invariable vertex numbers,the other is those with incre.
本文将复杂网络分成两类:节点数固定的复杂网络和节点数变化的复杂网络,且重点研究了前一类网络。
4) fixed point
固定小数点
5) fixed decimal point
十进固定小数点
6) fixed point
固定点,定点
补充资料:代数对数奇点
代数对数奇点
algebraic logarithmic singular point
代数对数奇点[ai妙砂面cl雌ari也而csing川ar户元m别1几”pa.,伙一几。n甲.如.,ec脚oc浦翻m叨l 解析函数f(力的一种孤立奇点:。,在该点的邻域内f(z)可表示为形如 (:一:。)‘{]n(:一:、)))k夕(:)的有限项之和,其中、是复数,k是非负整数,函数g(引在点孔正则解析且洲孔)笋0.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条