1) first stirling number S_1(n,k)
第一类Stirling数S1(n,k)
3) Stirling numbers of the first kind
第一类Stirling数
1.
Relationship of Stirling numbers of the first kind and Stirling numbers of the second kind;
第一类Stirling数和第二类Stirling数的关系式
2.
In this paper,by using generating functions,we obtain some identities involving tangent,arctangent,Bernoulli,harmonic and Stirling numbers of the first kind.
利用发生函数的方法建立了Tangent数、Arctangent数与Bernoulli数、调和数以及第一类Stirling数之间的几个关系式。
4) stirling numbers of the second kind
第二类stirling数
1.
Relationship of Stirling numbers of the first kind and Stirling numbers of the second kind;
第一类Stirling数和第二类Stirling数的关系式
2.
The purpose of this paper is to give analogous definitions of Apostol type, obtain certain explicit formulas involving the Stirling numbers of the second kind and Gaussian hypergeometric functions respectively,discuss their special cases and applications.
利用Apostol的方法,推广了高阶Euler数和多项式,得到了它们分别用第二类Stirling数和Gauss超几何函数表示的公式,最后给出了一些相应的特殊情况和应用。
3.
In this paper,properties of generalized Stirling numbers of the second kind are discussed,some new recurrence formulas for Stirling numbers of the second kind have been obtained.
讨论了广义第二类Stirling数的性质,得到了第二类Stirling数的一些新的递归公式。
5) Stirling number of the second kind
第二类Stirling数
1.
Considering the complexity on calculating the binomial distribution moments on the origin of higher-order with definition,Stirling number of the second kind of combinatorics was applied to probability.
考虑到直接用定义计算二项分布高阶原点矩的复杂性,将组合数学中的第二类Stirling数应用到概率中,给出了利用第二类Stirling数求二项分布m阶原点矩的方法:,并用实例对此方法进行了验证。
2.
The problem of the partition of a finite set can be solved by Stirling number of the second kind.
有限集的划分计数问题可通过第二类Stirling数给出解答。
3.
Stirling number of the second kind n n-i can be expressed by combination number.
第二类Stirling数nn-i可用组合数表示。
6) Stirling number of second kind
第二类Stirling数
1.
Summation problem of the series ∑∞DDk=2f(k)ζ-(k) concerning Riemann Zeta function is researched by means of combinatorial mathematics and Stirling number of second kind, and the summation formula is given.
采用组合数学的方法,利用第二类Stirling数研究了与RiemannZeta函数有关的级数∑∞f(k)ζ—(k)的求和问题,并得出了求和公式,这个公式表述简洁并有鲜明的规律性。
2.
The new combinatorial identities of Stirling number of second kind and Bell polynomial are obtained and an application is given.
讨论了Riordan矩阵运用,获得第二类Stirling数和Bell多项式恒等式,并给出了其应用实例。
补充资料:第一类超导体
见超导电性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条