1) regular and irregular cases
正则型和非正则型
1.
On the basis of transferring these inverse boundary valueproblems into direct problems for conjugate analytic functions, the solvability of the inverse problems isdiscussed, the integral representations of solutions of the regular and irregular cases to these inverse Riemannboundary value problems are obtained.
给出了共轭解析函数的一类Riemann边值逆问题的数学提法,在将此边值逆问题转化为边值问题的基础上,借助于共轭解析函数边值问题的相关理论,讨论了该逆问题的可解性,获得了该逆问题的正则型和非正则型情况的解的积分表达式。
2) non-regular
非正则型
1.
The solvation of Riemann-Hilbert boundary value of non-regular equations is discussed in generalized situation.
讨论了一般情况下,非正则型函数组Riemann-Hilbert边值问题的求解。
2.
The solving problem of non-regular Riemann boundary value problem of equations is discussed in general situation.
讨论了一般情况下非正则型函数组Riemann边值问题的求解问题。
3.
Non-regular Hilbert Boundary Value Problem of Equations;
讨论了一般情况下,非正则型函数组Hilbert边值问题的求解问题。
3) non-normal type
非正则型
1.
A class of non-normal type Riemann boundary value problems with square roots;
非正则型带平方根的Riemann边值问题
2.
In this paper, Hilbert boundary value problem of non-normal type for analytic function is considered.
本文考虑了解析函数非正则型的Hilbert边值问题。
4) irregularity sum
非正则和
1.
It is proved in this paper that some classes of special graphs are consecutive and their irregularity sum is (determined).
本文用构造法证明几类图是连续的 ,并确定了它们的非正则
2.
The irregularity sum E (G) of the graph G is the minimum sum of vertex labels among all irregular networks having G as an underlying graph.
图G的非正则和是在所有以G为基础图的非正则网络中,各顶点标号的和为最小的值,记为∑(G)。
5) nonlinear holmorphic model
非线性正则型
6) Howard canonical form
Howard正则型
1.
Also,the definition of the Howard canonical form is modified.
指出了翻转决策树法求解完全信息价值时可能存在问题的根本原因,提出完全信息价值在影响图中的本质表现为信息弧,并对Howard正则型影响图定义进行修正,进而系统分析了两种不同情形下基于影响图求解完全信息价值的思路。
补充资料:《则古昔斋算学》
见李善兰。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条