1) nonhomogeneous linear autonomy system
非齐次线性自治系统
1.
This article devises a new HPD method named HHPDC to solve nonhomogeneous linear autonomy system basing on Chebyshev orthogonal Polynomial series.
基于Chebyshev多项式函数系的特点,设计了求解非齐次线性自治系统的一种新的精细算法———基于Chebyshev正交多项式系的齐次扩容精细算法(HHPDC)。
2) quasi-homogeneous
拟齐次自治系统
1.
For the two dimensional quasi-homogeneous polynomial sys- tem,a more intrinsic relation between the new exponents for the reduced system,the exis- te.
用所接受的单参数李群的特征定义拟齐次自治系统,并且对拟齐次系统进行约化,定义约化系统的约化Kowalevskaya指数,给出该指数与原拟齐次系统的Kawalevskaya指数之间的关系,对二维的拟齐次多项式系统,具体给出约化Kowalevskaya指数特征与拟齐次多项式首次积分的更深入关系。
3) Non-linear self-consistent system
非线性自治系统
1.
Qualitative analysis of the first class non-linear self-consistent system;
一类非线性自治系统的定性分析
4) nonautonomous linear system
非自治线性系统
1.
To study the exponential stability for nonautonomous linear system with time-varying delays,this paper applies the methods of the Lyapunov-Krasovskii function and some analysis,to give sufficient conditions for the exponential stability of nonautonomous linear system by using linear matrix inequalities and the solution of Riccati differential equations.
为探讨一类具时滞非自治线性系统指数的稳定性及其实用性,本文利用Lyapunov函数方法和线性矩阵不等式及Riccati微分方程解的性质等,给出了这类线性系统指数稳定性的充分条件,这些充分条件可用线性矩阵不等式表示,且表达式中含有时滞项。
5) nonhomogeneous linear system
线性非齐次系
1.
By topological equivalent relation,we classify the nonhomogeneous lincar systems,and show that nonhomogeneous linear systems fall into a finite number of equivalence stability of such systems and give the necessary and sufficient conditions for the structural stability.
对自治线性非齐次系按拓扑等价关系进行了分类,表明了n维线性非齐次系的拓扑等价类只有有限个。
6) nonlinear non-autonomous motion systems (NNMS)
非线性非自治运动系统
1.
Extended equal-area criterion (EEAC) is the only strict quantitative stability analysis method of the nonlinear non-autonomous motion systems (NNMS) so far.
对非线性非自治运动系统,扩展等面积准则(EEAC)方法是目前惟一严格的稳定量化分析方法。
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条