1) feature of geometrical apace of rivers
水系几何空间特征
2) spatial geometry character
空间几何特征
1.
The categorization rule,classification rule,elementary rule and spatial geometry character rule of LOD operator setting were also concluded.
在选取模型中将显示比例尺和地图比例尺的比值作为LOD算子,总结了LOD算子设置的3个层次,以及分类、分级、要素和空间几何特征等LOD算子的设置规则。
3) geometric characteristics
几何特征
1.
Influence of calorific effect of chemical reaction on geometric characteristics of laser remelting zone;
化学反应热效应对激光熔凝区几何特征的影响
2.
But the geometric characteristics for the intersections of quadtrees with the boundary of the region often tend to be complicated.
四叉树法是生成规则四边形网格比较好的一种方法 ,但四叉树与区域边界相交时几何特征复杂。
3.
This thesis proposed a novel technique to measure the geometric characteristics of living human skulls based on CT scan images.
随着以CT、MRI技术为代表的现代医学影像技术的发展,人体组织、器官的活体几何特征测量得以实现。
4) geometrical feature
几何特征
1.
Facial Expression Recognition Basedon Geometrical Features;
基于几何特征的表情识别研究
2.
The geometrical feature, Theological attribute, thermodynamic attribute of melt and die heating in the pipe extrusion were studied based on Finite Element Method in this article.
运用CAE技术,分析和总结了影响篮网式管材挤出机头内熔体流动的几何特征参数、材料流变性能、材料热物理因素及机头加热等问题,了解了篮网式管材成型机头的结构特点、流动特点和加工特点,为从事篮网式机头设计及工艺加工专业人员提供技术参考。
3.
The algorithm is based on the geometrical features of an aircraft and the mathematical morphology.
该算法利用飞机的几何特征,通过数学形态学的原理,在存有噪声干扰的运动图像中简单快速有效地识别出所需目标的重要部位,自动获取其跟踪模板,通过相关匹配技术实现对飞机重要部位的稳定跟踪。
5) geometrical characteristic
几何特征
1.
The geometrical characteristics of sunken column in North China Coalfield is summarized from the aspects of its planar shape, sectional shape,development height and axle center change, etc.
从平面形状、剖面形状、发育高度及中心轴变化方面,总结了华北煤田陷落柱的几何特征。
2.
In order to solve the problem,a new algorithm for calculating RCS is presented based on the geometrical characteristic of target aircraft configurations and the method of moment(MOM).
针对目前隐身飞行器外形雷达散射截面(RCS)难以准确计算的问题,提出了一种基于目标外形几何特征和矩量法的飞行器RCS算法。
3.
Rational Bézier representation for quadratic curve and its transition were put forward, which was the basis of computation of geometrical characteristics of NURBS method for quadratic curve.
提出二次曲线有理Bézier表示形式及其转换,为二次曲线的NURBS方法几何特征的计算奠定了基础。
6) geometric feature
几何特征
1.
Man-made target detection algorithm of sonar image based-on geometric feature;
基于几何特征的声呐图像人造目标检测算法
2.
Extraction of geometric features from model of triangular surface piece;
三角面片模型中几何特征的提取
3.
Simplification of scattered point cloud with geometric feature reservation
保留几何特征的散乱点云简化方法
补充资料:一般空间微分几何学
在19世纪中,已经出现了黎曼几何。它是以定义空间两邻点间的距离平方的二次微分形式为基础而建立起来的。20世纪以来,因受到广义相对论的影响,黎曼几何发展很快,从此产生了以更一般的曲线长度积分为基础的芬斯勒空间,以超曲面的面积积分为基础的嘉当空间,以二阶微分方程组为基础的道路空间和K展空间等等,而这些通称一般空间。
芬斯勒空间 设M是参考于一系坐标xi(i=1,2,...,n)的n维集合,并且它的曲线xi=xi(t)的"弧长"是按照积分
定义起来的(其中,ρ>0)。这时,称M为芬斯勒空间。特别是,当时,得到黎曼空间。P.芬斯勒(1918)在其学位论文中曾经把黎曼空间的一些结果拓广到这个空间来,但是它的微分几何到??.嘉当(1934)才逐渐趋于完整。例如,这个空间仿射联络的确定,曲率论的建立等研究,都是以后才发展起来的。仅仅要指出,芬斯勒空间的测地线(即上列积分的极值曲线)的微分方程具有如下的形式:式中是由F(x,凧)确定的某种函数组。
近年来,无限维的芬斯勒流形在非线性分析中有重要作用。
嘉当空间 在n维空间里,以(n-1)维超曲面领域的表面积概念为基础而构成的几何,称n维嘉当空间几何。设(x)=( x1,x2,...,xn)表示空间一点的坐标,(u)=(u1,u2,...,un)表示该点切空间的(n-1)维子空间的齐次坐标,(x,u)称为点(x)的超平面素。以B表示超平面素所成的一个区域,采用一个在B是正则的而且取正值的函数L(x,u),这里L关于ui是正齐一次的,L(x,ρu)=ρL(x,u),(ρ>0),并约定,在超平面素(x,u)的(n-1)维表面积元素为
为了改写dO,设是光滑超曲面F的正则参数表示。从(n-1)×n矩阵删去第k行,而且用(-1)k+1pk表示这样得出的(n-1)阶行列式。那么,从上列的约定便导出一个在有向超曲面F的区域上的(n-1)重积分 它表示了这个区域的"(n-1)维表面积"。
从基本函数 L(x,u)作 且令α=det|αik|,嘉当的测度张量可表成
这样,这种空间微分几何便有了发展的基础,特别重要的是研究面积积分的第一和第二变分,以及极值离差理论,即能保持极值超曲面的无穷小变形的方程。
K展空间 设在N 维空间SN里给定了一组K 维流形,使得组中有一个且仅有一个流形通过一般位置下的任何K+1个邻近点,或者和任何一个已知的K维元素(按照一点和其衔接的K维平坦流形组成的元素)相切。这些K维流形简称K展,具有这种结构的N维空间SN称K展空间。特别是,当K=1时,SN就是道路空间。
设(xi;i=1,2,...,N)是SN的一点的坐标,那么每个K展可表成或简写为,式中各函数是变数u和参数α的解析函数(或充分光滑的函数)。从定义易知如果由K展的表达式消去参数α,便获得仿射K展空间的偏微分方程组 式中函数是p的齐二次函数。
根据J.道格拉斯导进一个仿射联络到仿射 K展空间SN: 从而把上列偏微分方程组改写成
。从这个仿射联络不但可以导出仿射曲率张量,还可作出射影联络以及有关的偏微分方程组的可积分条件,还可证明;嘉当的"平面公理"的成立与空间为射影平坦是等价的。
参考书目
苏步青著:《一般空间的微分几何学》,科学出版社,北京,1958。
芬斯勒空间 设M是参考于一系坐标xi(i=1,2,...,n)的n维集合,并且它的曲线xi=xi(t)的"弧长"是按照积分
定义起来的(其中,ρ>0)。这时,称M为芬斯勒空间。特别是,当时,得到黎曼空间。P.芬斯勒(1918)在其学位论文中曾经把黎曼空间的一些结果拓广到这个空间来,但是它的微分几何到??.嘉当(1934)才逐渐趋于完整。例如,这个空间仿射联络的确定,曲率论的建立等研究,都是以后才发展起来的。仅仅要指出,芬斯勒空间的测地线(即上列积分的极值曲线)的微分方程具有如下的形式:式中是由F(x,凧)确定的某种函数组。
近年来,无限维的芬斯勒流形在非线性分析中有重要作用。
嘉当空间 在n维空间里,以(n-1)维超曲面领域的表面积概念为基础而构成的几何,称n维嘉当空间几何。设(x)=( x1,x2,...,xn)表示空间一点的坐标,(u)=(u1,u2,...,un)表示该点切空间的(n-1)维子空间的齐次坐标,(x,u)称为点(x)的超平面素。以B表示超平面素所成的一个区域,采用一个在B是正则的而且取正值的函数L(x,u),这里L关于ui是正齐一次的,L(x,ρu)=ρL(x,u),(ρ>0),并约定,在超平面素(x,u)的(n-1)维表面积元素为
为了改写dO,设是光滑超曲面F的正则参数表示。从(n-1)×n矩阵删去第k行,而且用(-1)k+1pk表示这样得出的(n-1)阶行列式。那么,从上列的约定便导出一个在有向超曲面F的区域上的(n-1)重积分 它表示了这个区域的"(n-1)维表面积"。
从基本函数 L(x,u)作 且令α=det|αik|,嘉当的测度张量可表成
这样,这种空间微分几何便有了发展的基础,特别重要的是研究面积积分的第一和第二变分,以及极值离差理论,即能保持极值超曲面的无穷小变形的方程。
K展空间 设在N 维空间SN里给定了一组K 维流形,使得组中有一个且仅有一个流形通过一般位置下的任何K+1个邻近点,或者和任何一个已知的K维元素(按照一点和其衔接的K维平坦流形组成的元素)相切。这些K维流形简称K展,具有这种结构的N维空间SN称K展空间。特别是,当K=1时,SN就是道路空间。
设(xi;i=1,2,...,N)是SN的一点的坐标,那么每个K展可表成或简写为,式中各函数是变数u和参数α的解析函数(或充分光滑的函数)。从定义易知如果由K展的表达式消去参数α,便获得仿射K展空间的偏微分方程组 式中函数是p的齐二次函数。
根据J.道格拉斯导进一个仿射联络到仿射 K展空间SN: 从而把上列偏微分方程组改写成
。从这个仿射联络不但可以导出仿射曲率张量,还可作出射影联络以及有关的偏微分方程组的可积分条件,还可证明;嘉当的"平面公理"的成立与空间为射影平坦是等价的。
参考书目
苏步青著:《一般空间的微分几何学》,科学出版社,北京,1958。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条