1) linear constant coefficient differential equation
线性常系数微分方程
1.
Through concepts of the matrix exponential function and the matrix function differential coefficient in combination with relevant results of linear algebra and differential equation,the paper finds the matrix solution to initial value problem of an n-th order linear constant coefficient differential equation.
借助矩阵指数函数和矩阵函数导数的概念,结合线性代数和微分方程的有关结论,给出了n阶线性常系数微分方程初值问题的矩阵解法。
2) linear ordinary differential equation with constant coefficients
常系数线性常微分方程
1.
To find a particular solution of a linear ordinary differential equation with constant coefficients,in which,the nonhomogeneous part f(x) is a polynormial;an exponential function;a sine or cosine function or a production of them,a finite recursive method is presented in this paper.
对于非齐次项为多项式,指数函数,正(余)弦函数,或它们的乘积形式的常系数线性常微分方程,提出了求其特解的有限递推法。
4) linear differential equation with constant coefficients
常系数线性微分方程
1.
In this paper, by transformation, the author gives the method of solution for linear differential equation with constant coefficients.
应用变换给出了常系数线性微分方程的一种解法。
5) linear partial differential equation with constant coefficients
常系数线性偏微分方程
6) 2-order non-homogeneous linear ordinary differential equation with constant coefficient
二阶线性常系数非齐次常微分方程
1.
A new teaching method for 2-order non-homogeneous linear ordinary differential equation with constant coefficients;
二阶线性常系数非齐次常微分方程的分解式讲授方法
补充资料:常系数线性常微分方程
常系数线性常微分方程
ion with constant coefficients linear ordinary differential equa-
常系数线性常微分方程【枷。ro司画叮由肠,即位叭侧,.-d佣初山伪份加吐仪喇击d曰血;皿“e如oe皿巾加Pe皿”ua-朋oeyP姗ell“e c noc”皿Hn“MH劝3如加”HellT别”“} 形如 x(”)+a:x(”一’)+…+a。x=f(r)(1)的常微分方程(见常微分方程(山伍州翔石日eq业tion,。成咖叮)),其中x(t)是未知函数,a,,…,a。是给定的实数,f(t)是给定的实函数. 对应于(l)的齐次方程(加几幻g”阳us叫Ua-tion) x(”)+a .x‘”一’)+…+a。x=o(2)可求积如下.设又:,…,又*是特征方程 又”+al几”一’+…+a。_1又+a。=O(3)的所有不同的根,重数分别为l,,…,l*;11十…十l*=n.于是函数e匆‘,r。‘,‘,…,r‘,一’e‘,亡,j=1,…,k(4)是(2)的线性无关的解(一般说是复的);即它们构成一个基本解组(允n山nrnt习systeTn of solutions).(2)的通解是基本解组的具有任意常数系数的线性组合·如果幻=为+角i是复数,则对每个满足o簇m蕊12一l的整数m,复解t门e”‘的实部t,e勺‘·cOS口zt和虚部t“e口,r sin刀,t是(2)的线性无关的实解,从而重数为lj的一对共扼复根为士汤i对应Zlj个线性无关的实解t爪e勺‘c“口,t,t用e“,‘sin几t,川=o,l,‘”,l,一l· 非齐次方程(l)可以用常数变易法(银由tionofco璐扭nts)求积.如果f是拟多项式(q恻昭i一卯1扣om阁)即 f(t)=e“‘(尹.(r)c沉bt+砚。(t)sin br),其中p。,q。是次数续m的多项式,且a十bi不是(3)的根,则可求(l)的形如 x。(t)=e“‘(P。(t)姗br+Q。(r)sin bt)(5)的特解;这里氏,Q。是系数待定的m次多项式,这些系数可通过以(5)代人(l)求出.如果a+bi是(3)的k重根,则可用待定系数法求(l)的形如 x。(t)=r‘e“‘(p,(r)e仿br+Q。(r)sin bt)的特解.如果x。(O是非齐次方程(l)的一个特解而x:(t),…,x。(t)是相应的齐次方程(2)的基本解组,则(l)的通解由公式 x(t)=x。(t)+ C lx,(t)+…+C。x。(r)给出,其中C,,…,C。是任意常数. n阶齐次线性微分方程组 交=Ax(6)(其中x任R”是未知向量,A是n xn实矩阵)可如下求积.如果又是矩阵A的重数为k的实本征值,则可求出对应于又的一个解x=(x:,,二,x。),其中 x:=pl(t)e,亡,…,x。=p。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条