1) statistical convergence in probability
统计依概率收敛
1.
convergence,statistical convergence in probability,and statistical convergence in distribution respect to a.
收敛、统计依概率收敛的充要条件或充分条件。
2) probability convergence
依概率收敛
1.
Through almost sure convergence of random variables, the probability convergence can be derived; and further the weak convergence can be derived.
由随机变量序列几乎处处收敛可推出其依概率收敛,进而可推出其依分布收敛,可见判别几乎处处收敛的重要性。
2.
In this paper,we study the mutual relations of complete convergence,almost everywhere converge,convergence in the mean of order r and the probability convergence.
研究了复值随机变量序列的完全收敛,几乎处处收敛,r阶平均收敛,依概率收敛之间的相互关系,得到了几个有意义的结论。
3.
In this paper,we discuss the mutual relation of complete convergence,almost everywhere converge,convergence in the mean of order r,probability convergence and convergence in distribution for real valued random variable sequence{ξ n},under the complete probability space.
在完备的概率空间 (Ω,, P)下,讨论了实值随机变量序列 {ξ n}的完全收敛、几乎处处收敛、 r次平均收敛、依概率收敛、依分布收敛之间的相互关系,得到若干有意义的常用结论。
3) convergence in probability
依概率收敛
1.
This paper applying probability knowledge,such as convergence in probability and control convergence theorem,generalizes the theorem in paper [2],obtains the general theorem of solving the limit of a class of multi-integral,and states the priority of using the theorem through the concrete example.
文献[1]和文献[2]举例说明了运用概率思想求多重积分极限方面的应用,本文综合应用依概率收敛和控制收敛定理等概率知识,推广文献[2]的定理,给出求解一类多重积分极限的一般性定理。
2.
Definitions of convergence in probability,convergence in distribution and almost sure convergence of sequences of random variables are given.
给出了随机变量列的依概率收敛、依分布收敛、几乎必然收敛的定义,举例说明了其应用,并研究了三种收敛性之间的相互关系。
3.
The property in convergence of sequence of number was imported to convergence in probability and proved it in this paper.
主要把数列收敛的一些性质引进到随机变量依概率收敛中来,并加以证明。
4) depending statistic convergent(p)
依概率收敛(p)
5) convergence with probability one
依概率1收敛
6) exponential convergence in probability
依概率指数收敛
补充资料:依概率收敛
依概率收敛
convergence in probability
依概率收敛【以.ve咭e岭iop州肠bili勺;仁.却口MocTI..班侧祖1,.洲,.] 定义在某个概率空间(Q,了,P)上的随机变量序列X:,戈,…向一个随机变量X的依下述方式定义的收敛:戈几X,如果对任何。>o, 尸{}弋一引>目*0当””0O时在数学分析中,这种收敛形式称为依测度收敛(conver-罗nce in measure).从依概率收敛可推出依分布收徽(conve卿no in distribution).B.H.E片rK习班o:撰【补注】亦见概率测度的弱收敛(weak convergen沈ofprobability meas、、res):收徽的类型(conver罗n件,types()f);分布收敛(dlstributions.~er罗n优of).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条