1) Bogdanov-Takens singularity
Bogdanov-Takens型退化奇点
1.
The author studied Bogdanov-Takens singularity(i.
讨论了酶催化反应模型S-A系统的Bogdanov-Takens型退化奇点(即尖点),给出了奇点为Bogdanov-Takens型退化奇点的条件,并推导出了相应的正规形。
2) Takens-Bogdanov point
Takens-Bogdanov点
1.
In this work, we mainly study the numerical analysis of bifurcation theory, especiallythe numerical computation of Takens-Bogdanov point in delay differential equations.
本文中,我们主要考虑分支理论的数值方法,具体而言,时滞微分方程中Takens-Bogdanov点的数值计算方法。
3) Takens-Bogdanov bifurcation point
Takens-Bogdanov分歧点
4) Bogdanov-Takens system
Bogdanov-Takens系统
1.
A Degenerate Cubic Perturbation of Bogdanov-Takens System;
Bogdanov-Takens系统的一类退化三次扰动
2.
In this paper,by calculating the Mel nikov functions of high order and introduc- ing a new Riccati equations,the Bogdanov-Takens system under a class of cubic perturba- tions is investigated,the order of cyclicity under small perturbations is obtained.
通过计算高阶Mel'nikov函数,并引入新的Riccati方程,对Bogdanov-Takens系统的一类三次扰动进行了研究,得到了小扰动条件下环性阶数的估计,同时也给出了原点为中心的条件。
3.
In this paper, by using the successive function and implicit function theorem, the number of limit cycles bifurcated from the origin of Bogdanov-Takens system under quadratic perturbations is given combined with the calculation of Mel nikov functions.
本文利用后继函数法和隐函数定理,并结合Mel’nikov函数的计算,对Bogdanov-Takens系统在二次扰动下从中心分岔出的极限环个数进行了估计。
5) Bogdanov-Takens bifurcation
Bogdanov-Takens分支
1.
The Bogdanov-Takens bifurcation is studied when there is a unique degenerate positive equilibrium.
通过研究退化的唯一正平衡点,得到了Bogdanov-Takens分支,分支出同宿圈。
2.
In view of this,we consider the Hopf bifurcation and Bogdanov-Takens bifurcation for the predator-prey system with delay and non-monotonic functional response,and investigate the direction of Hopf bifurcation and stability of bifurcation periodic solutio
基于此,我们考虑了同时含有时滞和非单调功能反应函数的捕食系统,研究了系统的Hopf分支和Bogdanov-Takens分支,并给出Hopf分支的方向和分支周期解的稳定性,同时计算了Bogdanov-Takens分支的普适开折。
6) Bogdanov-Takens bifurcation
Bogdanov-Takens分歧
补充资料:奇点
指时空度规张量 gμv中的奇点。奇点可以分成两种,一种是坐标奇点,一种是本性奇点。前一种可以通过坐标变换加以消除,后一种则不能。例如,对于标准表示的史瓦西度规:
式中r、θ、嗞为球极坐标。r=2GM/c2即为坐标奇点,若用下列坐标变换就可消除:
式中T为一个任意常数。而r=0为本性奇点,因为该点时空的曲率趋向无限。霍金证明过广义相对论中的一个奇点定理。该定理说,只要物性不是太特别的,那么,由广义相对论场方程得到的解gμv必定含有奇点。
式中r、θ、嗞为球极坐标。r=2GM/c2即为坐标奇点,若用下列坐标变换就可消除:
式中T为一个任意常数。而r=0为本性奇点,因为该点时空的曲率趋向无限。霍金证明过广义相对论中的一个奇点定理。该定理说,只要物性不是太特别的,那么,由广义相对论场方程得到的解gμv必定含有奇点。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条