说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 微生物功能基因组学
1)  microbial functional genomics
微生物功能基因组学
2)  Plant functional genomics
植物功能基因组学
1.
In this paper, the methodology and technical advantages of TILLING were briefly introduced and its applications in plant functional genomics, mutational molecular breeding and predicting the mutation frequency were tentatively discussed.
本文简要介绍了TILLING的原理和技术优势,并对其在植物功能基因组学、突变分子育种和预测突变频率中的应用作了初步探讨。
3)  Microflora genomics
微生物区系基因组学
4)  plant functional genomics
植物功能基因组
1.
Activation tagging and its application in plant functional genomics research;
激发标签技术在植物功能基因组研究中的应用
2.
Application of yeast two-hybrid system to plant functional genomics study;
酵母双杂交在植物功能基因组研究中的应用
3.
RNAi technology and its application in plant functional genomics;
RNAi技术及在植物功能基因组研究中的应用
5)  Functional genomics
功能基因组学
1.
A powerful tool for functional genomics research——Comparative genomics;
功能基因组学研究的有力工具——比较基因组学
2.
Mechanisms for miniature dwarf characteristics of Micro-Tom tomato and its application in plant functional genomics studies;
Micro-Tom番茄矮化微型机制及其在植物功能基因组学研究中的应用
3.
Research progress on functional genomics of mastitis related genes in dairy cows;
奶牛乳房炎相关基因的功能基因组学研究进展
6)  microbial genome
微生物基因组
1.
It is shown that correlation for fused genes in microbial genome is larger than that of non fused genes,whereas the difference of averaged amino acid polarity for fusion proteins less than corresponding value.
统计分析了 30类完整的微生物基因组中融合基因的关联、融合蛋白的氨基酸平均极性差和基因组中融合基因对距离的分布 ,与非融合蛋白或基因的相应值对比分析发现 ,微生物基因组中融合基因对的平均关联程度大于非融合基因对的相应值 大多数融合基因为近邻基因 ,融合蛋白的平均极性差小于非融合蛋白的平均极性差 对结果的生物学意义作了简单讨
补充资料:后基因组生物学

后基因组生物学

后基因组生物学即在2005年以后,人类基因组的全核苷酸顺序测定工作完成,而且,到那时也许还有一些别的生物的基因组全核苷酸顺序测定工作完成了,到那时生物学该是个什么样子?生物学该研究些什么?这些问题目前我们还不能十分有把握地回答,但至少可以说,那时是基因组测定工作完成后的时代,那时的生物学也就是所谓"后基因组生物学。"有人对2001年后的生物学作出了一些预测。

首先,我们将能够对更多的疾病在基因中找到答案,我们将能够对更多疾病应用基因药物来治疗。本来基因是不应申请专利的,被授于专利的只限于发明,而不是发现。但是,每克隆一个与疾病有关的基因,搞清它的作用机制、并制成基因药物用于临床,平均要投入1亿美元。有投入就必须有回报,如果投入者的成果最后大家都能享用,那么经过商业竞争新产品就只能以略高于成本的价格出售。如果是这样,投入者的先期投入将无法收回。其后果一是打击了投入者的积极性,二是限制了投入者对新项目投入的能力。所以,人类基因现在也被授予了专利。如肥胖基因,该基因的克隆曾被一家生物制药公司以3000万美元收购;但该公司并未自己生产减肥药物,而是在第二年以7000万美元的高价转手获利,年利率高达250%。可见,与基因有关的买卖将会在今后大量涌现。

2001年以后的药物,很多是基因药物,基因既然可以申请专利,就会变成一项有利可图的产业。在这个产业中,我泱泱大国如何作为呢? 10万基因我们能"抢"到多少呢?在"人类基因组"研究方面我们应该做些什么呢?这是值得我国科学界深思的问题。

1997年11月11日联合国教科文组织在巴黎召开大会,通过了《人类基因宣言 》。宣言指出:每个人身上的基因物质是"人类的共同遗产",不应成为盈利的手段。这就是说,科学研究应该与商业行为分开,科学研究可以从商业机构那里得到资助,但科学成果应该是人类的共同财富。

除了基因药物的研制以外,后基因组生物学至少还应进行以下几方面的研究。

关于基因表达谱的研究

前面讲到尿黑酸尿症是单基因遗传病,只要有缺陷的基因被正常基因取代,问题也就迎刃而解了。

这些过程肯定是涉及基因组中一群基因的过程,这些基因协同活动、程序化地表达,从而使生命过程有条不紊地进行。我们要了解的就是这一群基因的表达模式(gene expression pattern),即基因表达谱,而不是仅仅某个基因的活动情况,要解决如此复杂的问题就必须在方法学上有所突破,创造出高效快速地同时测定基因组成干上万的基因活动的方法。有人提出了"基因表达连续分析法"(serial analysts of gene expression,sage)和"微阵列法"(microarry),企图能解决以上问题,以上两法的模式说明如图。

基因表达连续分析法:如图1所示,我们可同时测定正常人和病人细胞中的基因活动情况。基因表达产生mrna,表达的基因数越多,mrna的种类也越多;某一基因的表达水平越高,该基因的mrna的量也就越多。将所有mrna都反转录成cdna,从每一个cdna中截取一段9bp的"标记"片段,进行pcr扩增、拼接,对拼接后的大片段测序,即可对各表达基因进行分类、定量统计。用此法即可看出正常细胞和病变细胞中表达基因在种类和水平上的差异,同时还可能从基因表达图的特别处发现新的基因。应用此法还可比较不同分化细胞里基因表达群在种类和水平上的差异。微阵列法: 此法是将生物的mrna反转录成cdna,并建立cdna基因文库(双链cdna的克隆);然后将这些克隆一个一个地放入9b孔板上(每孔一个),加热使cdna变性并固定;最后如图1(左)所示,将正常细胞和病变细胞的mrna制成。dna,分别用不同的显色标记(如红色荧光标记和绿色荧光标记),并分别滴入各孔进行分子杂交。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条