说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 混合随机变量
1)  mixing random variable
混合随机变量
1.
As its application, we characterize p-smoothness of Banach space through the strong law of large numbers of B-valued ψ-mixing random variables, and obtain some results on the strong law of large numbers for B-valued dependent random variables without assumption on rate of tending to zero of (?) and ψ-mixing parameters (?)n and ψn but .
作为应用,由B值y-混合随机变量序列的强大数定律刻划了Banach 空间的p可光滑性,在不要求混合系数(?)n和ψn趋于0而是在infn≥1(?)n=0或infn≥1ψn=0的条件下,获得了B值相依随机变量序列有关强大数定律的一些结果。
2)  φ-mixing random variable
φ混合随机变量
1.
In this article,we studied the large deviation principle and moderate deviation principle for(m-dependent) random variables and φ-mixing random variables.
研究m相依和φ混合随机变量列的中偏差原理和大偏差原理。
3)  m-dependent sequence
混合随机变量序
4)  random variable of mixed type
混合型随机变量
5)  Ψ-mixing random variables series
Ψ-混合随机变量序列
6)  mixing random variables sequence
混合随机变量序列
补充资料:水文随机变量
      受随机因素影响,遵循统计规律变化的水文变量。水文随机变量在未来任一时刻出现的数值无法准确预测,但能以分布函数(或等价的概率密度函数)来反映其统计规律性,也就是表示其各种数值出现的可能性。分布函数的形式,可根据资料按水文统计学的有关原理和方法予以确定。分布函数与概率密度函数则有如下关系:
  
  式中x为随机变量;F(xp;)为分布函数; f(t;θ)为概率密度函数;为x大于或等于xp这一事件出现的概率;xp称为x的p分位数,或超过概率为p的设计值。上式常以图形的方式表示,称为频率曲线(见图)。
  
  
  确定水文随机变量的分布函数及其所含的参数,是研究水文随机变量的主要目的。水文学中常用的分布函数有以下几种:皮尔逊Ⅲ型分布、对数皮尔逊Ⅲ型分布、对数正态分布、 概化极值分布、 韦克贝分布、克里茨基-门克尔分布等。在中国主要使用皮尔逊Ⅲ型分布。其概率密度函数如下:
  
  x≥α γ0
  式中α、β、γ 为待估参数;Γ(γ )为伽玛函数。三个参数α、β、γ 与随机变数 x的三个主要数字特征值(数学期望Ex、方差σ婌、偏态系数Cs)有一定的关系,可相互推求。这种情况对其他分布也是如此。不过不同的分布,参数与特征值之间的关系不同而已。在参数估计时,有的方法,如极大似然法,是先估计参数α、β、γ ,然后由有关公式可求得相应的Ex、Cv(离势系数)与Cs;有的方法,如矩法或适线法,是先估计出Ex、Cv及Cs,需要时,可由有关公式求出相应的参数值。
  
  确定水文随机变量分布函数的形式,除用上述假设检验的方法外(见水文统计学),还使用导出分布的方法,即考虑水文变量的物理性质并做若干假定,再经推导而得。其中又可分为依据事件的模型和联合概率的模型。由于问题复杂,为便于推导而作的假定常与实际情形相差较远,故此种途径尚处于研究阶段,有时可在缺乏资料的小流域上应用。
  
  

参考书目
   V.Yevjevich, Probability and Statistics in Hydrology,Water Resources Publications,FortCollins,Colorado,1972.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条