1) uniformly valid asymptotic expansions
一致有效渐近展式
2) uniformly valid asymptotic expansion
一致有效渐近展开式
1.
A uniformly valid asymptotic expansions of the solution is also given.
利用微分不等式理论研究了一类具非线性边界条件的半线性时滞微分方程边值问题· 采用新的方法构造上下解,得到了此边值问题解的存在性的充分条件,并给出了解的一致有效渐近展开式·
3) Uniformly valid asymptotic expansions
一致有效渐近展开式
1.
Using the fixed point principle and the theory of differential inequality, we prove the existence of the solution and an uniformly valid asymptotic expansions of the solution is given as well.
利用不动点原理及微分不等式理论 ,我们证明了边值问题解的存在性 ,并给出了解的一致有效渐近展开式 。
4) Uniformly Efficient Asymptotic Expansion
一致有效渐近展开
1.
Under some mild conditions, the existence of the perturbed solution is proved and its uniformly efficient asymptotic expansions up to its nth-order derivative function are given out.
在较一般的条件下,证明了摄动解的存在性,并得到了摄动解直到n阶导函数的一致有效渐近展开式,从而推广和改进了前人的结果。
5) uniformly valid asymptotic solution
一致有效渐
1.
The uniformly valid asymptotic solution of Nth-order for ε1and Mth-order for ε2 for an orthotropic rectangular plate with two neighboring edges clampedand the orther free are obtained.
使用“两变量法”和“混合摄动法”对非均布横向载荷作用下的正交各向异性板的大挠度问题进行了研究,获得了两邻边固定两部边自由正交各向异性矩形板对ε1为N阶和对ε2为M阶的一致有效渐近解。
6) solutions of effectively asymptotic expansions
有效渐近展开式解
1.
Some solutions of effectively asymptotic expansions are studied in this paper which would use powerful symbolic operation and control sentence provided by Mathematica system to a weakly nonlinear system ü+w 2 ou=εf(u,·u),and some of automatically solving problems of Lindstedt Poincare s method are considered,such as method of classially singular pertubations.
应用Mathematica系统的强大的符号运算功能以及该系统提供的控制语句 ,对一类弱非线性系统櫣 +w20 u =εf(u ,·u)的有效渐近展开式解进行了研究 ,用Mathematica系统实现了一种古典的奇异摄动方法—LindstedtPoincare方法的自动求解问题 ,并调试通过程序做成了程序
补充资料:渐近式
渐近式
asymptotic expression
渐近式【.、ym ptotiee邓~ion~m~删-p.翻泊.e】 同渐近公式lasymptotzcfo,mula,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条