1) Yetter-Drinfel d module coalgebra
Yetter-Drinfel'd模余代数
2) Hopf Yetter Drinfel d (C,H)-modules
Hopf Yetter Drinfel'd(C,H)-模
3) Yetter-Dr
交叉Hopf群-余代数上的Yetter-Drinfeld模
4) symmetric YetterDrinfel'd categories
对称Yetter-Drinfel'd范畴
5) comodule coalgebra
余模余代数
1.
This paper introduces the conception of two-sided Hopf comodule coalgebras and mainly gives the Maschke theorem for two-sided H-comodule coalgebra.
引入了双边Hopf余模余代数概念,并证明了双边Hopf余模余代数的Maschke定理。
6) module coalgebra
模余代数
1.
Let L and A be Hopf algebras on field k with antipodes SL and SA,and let C be a right A-module coalgebra.
设L是域k上的Hopf代数,其对极为SL;A是Hopf代数,其对极为SA,令C是右A-模余代数,给出改进后的LLYD中(C,A)-Hopf模的基本结构定理,是一般Hopf模基本结构定理的推广。
2.
For k a commutative ring,A a k-bialgebra and D a right A-comodule k-algebra,we define a new comultiplication on the A-comodule D to obtain a “twisted coalgebra”D~τ,and give the sufficient and necessary conditions for D~τbeing a A-module coalgebra.
设k是交换环,A是k上的双代数,D是右A-模余代数,B是右A-余模代数。
3.
Let L and A be Hopf algebras on field k with antipodes s_L and s_A, B being a right A-comodule algebra, C a right A-module coalgebra.
设L是域k上的Hopf代数,其对极为sL;A是-Hopf代数,其对极为sA,B是右A余模代数,C是右A模余代数,给出LLYD中(A,B)Hopf模的定义以及LLYD中(A,B)-Hopf模的基本结构定理,并讨论了其对偶情况。
补充资料:代数余子式
代数余子式
(algebraic) cofoctor
代数余子式【(algebraic)即血d匕r;呱响卿洲心搜助uo几.日川.],子式(minor)M的 数 (一l丫十‘detA了卜老,这里M为某n阶方阵A的带有行i,,…,几与列j,,一人的k阶子式;detA式’君是从A划去M的所有行与列后得到的n一k阶矩阵的行列式;s二i,十…十i*,‘习、十…十人·下述La禅aCe窄浮(L aPlaCe‘heorem)成立:如果在一个”阶行列式中任意固定r行,则对应于这些固定行的所有r阶子式与它们的代数余子式的乘积的和等于这个行列式的值.晰注】此LaPlaCe定理通常称为行烈莽的LaPla“尽开(加Pla.develoPment of a determinant).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条