1) spherical uniform distribution
球面上均匀分布
2) spherioidar uniform distribution
球体上均匀分布
3) uniform measure on unite splere
单位球面上均匀测度
4) uniform distribution
均匀分布
1.
Evaluation of the interval point on uniform distribution;
均匀分布区间(1-q)a+qb点的估计
2.
Estimate of the interval midpoint on uniform distribution;
均匀分布区间中点的估计
3.
Evaluation of the interval centre on uniform distribution;
均匀分布区间中心的估计
5) uniform distribution
分布均匀
1.
Image scrambling evaluation method of uniform distribution
分布均匀性的图像置乱衡量方法
6) even distribution
均匀分布
1.
The application and effect of the even distribution/Array pattern of diamond in diamond tools at home and abroad are introduced.
本文介绍了近年来金刚石均匀分布/有序排列在国内外金刚石工具中的应用与效果,解决了金刚石工具效率与寿命相互矛盾的难题,通过优化与控制工具内部金刚石之间的间距,实现了既提高工具寿命,又增加效率的目的。
2.
Then it specially introduces three methods: even distribution,normal distribution and exponential distribution, which are used to give bi.
然后在此基础上重点介绍了均匀分布随机序列、指数分布随机序列和正态分布随机序列这些可控随机序列产生的原理和实现方法 ,并通过实例体现这几种方法的良好效果。
3.
In complete information system,by developing logical method and defining formulas and their semantics,the concept of even distribution for semantics of a formula is defined.
采用逻辑的方法在完备信息系统中展开讨论,通过对公式及公式语义的定义,引出了公式的语义在信息系统上均匀分布的概念。
补充资料:均匀分布
均匀分布
uniform distribution
均匀分布(山心谊m业州加血n;paauoMep“oe pac“pe‘皿e邢H“e],在数论中亦称一致分布 一类概率分布的统称,由“等可能结果”的思想到连续情形的推广引起.如同正态分布(加m旧1此-trib丽on)一样,概率论中均匀分布在某些问题中作为确切分布,在另一些问题中作为极限分布出现. 在直线的一个区间上的均匀分布(矩形分布).在区间【“,b],“。,其特征函数为 。(r卜-2一一一。!!”一。,!·、. 诬以D一a) 在10,11上均匀分布的随机变量可由独立随机变量序列X.,XZ,…,以概率l/2取O和1,通过令 x=艺XnZ一” 月~l来构造(X。是X的二进制展开中的数字).随机数X是在【0,11上均匀分布的.这一事实有着重要的统计应用,例如见随机数和伪随机数(mndom an(1哪eudo·。ndom 11山刀比招). 如果两个独立随机变量X,和戈遵从【o,l]上的均匀分布,则创门的和遵从〔O,2]上的所谓三角分布(tnallgthard后颐bLIt幻n),其密度uZ(x)=l一11一x{,对x任10,21;。2(x)=O对x举兀o,21.三个遵从10,1]上均匀分布的独立随机变量和遵从【O,3]以上 扩xZ_/ }二兰-,O蕊x<1. }今 }天-一J瓜X一lj一,/、 }~全一一一二立二立一生二-.1落x<2.〔r,IX万=( }二匕一一‘二生之一一止2一二一匕立二二一一之止-,K,丈飞 t”,x,:u,。J.为密度的分布.一般地,遵从汇O,11上均匀分布的独立变量和X,+二+戈具有密度 l咨,,、‘「nl, “《X,二—2吸一1】『{_{‘X一k,’: 又n一i):k”。LKJ对0(x成n;u。(x)=O,对x必[0,。l;此处 r 9.了>0. 七o,:簇0.当n~的时,和x,+…+x。,在其数学期望。/2处中心化,用标准差、气雨进行尺度变换(即(‘、+…十x。一。/2)/习f万7丽)下趋向于参数为。和1的正态分布(对。=3其近似程度对许多实际问题已经令人满意). 在统计应用中构造具有给定分布F的随机变量的过程基于以下事实:设随机变量Y在10,l]上均匀分布,设分布函数F是连续的且严格递增,则随机变量x之F一‘Y具有分布函数F(在一般情形必须将x定义中的反函数F一’(y)代之以它的一个类比,即令F一’(,)二inf{x:F(x)(夕簇F(x+O)}). 作为极限分布的区间上的均匀分布.下面给出一些由极限产生的〔O,l]上均匀分布的典型例子: l)设X、,XZ,…是具有同样连续分布函数的独立随机变量,则创门的和s。,取模1,即和s,的分数部分{S。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条