1) full Steiner tree
满Steiner树
1.
The full Steiner tree problem(TST) is to find a minimum weight Steiner tree with all the vertices of its leaves.
满Steiner树问题(TST)是求解一个正则点都是叶子的最小Steiner树问题。
2) full bottleneck Steiner tree
满瓶颈Steiner树
1.
It is suggested to solve the full bottleneck Steiner tree problem is to find a tree S from the undirected graph G,with all the vertices in the given points being leaves and the weights of the maximum edges being minimum.
首先对Steiner树,瓶颈Steiner树研究现状加以介绍,指出满瓶颈Steiner树就是在已知图中找一颗树S,使给定的点集在S中的点都为叶子,且最大的边权值最小,然后给出满瓶颈Steiner树的定义,利用分解,转化,组合的思想,给出求解满瓶颈Steiner树问题的一个多项式算法,证明算法正确性,说明该算法的时间复杂性,最后给出相应的数值例子,说明算法正确性。
3) Separable Quasi-Full Steriner Tree
可分拟满Steiner树
1.
This paper shows the structure properties of Separable Quasi-Full Steriner Tree and the generating arithmetic of optimal Separable Quasi-Full Steriner Tree.
研究可分拟满Steiner树的结构性质与最优可分拟满Steiner树的生成算法。
4) Steiner tree
Steiner树
1.
Construction of Steiner tree for multi-source based on CBT;
基于CBT的多源Steiner树构造算法
2.
An improved algorithm for Steiner trees;
一种改进的Steiner树启发式算法
3.
Multicast Technology in KOD and Steiner Tree Heuristic;
KOD多播技术与Steiner树启发式算法
5) Minimum steiner tree
最小Steiner树
1.
The minimum Steiner tree problem is one of the NP-hard problems, which has extensive applications in many real-world problem,such as communications network.
最小Steiner树问题是NP难问题,它在通信网络等许多实际问题中有着广泛的应用。
2.
In this algorithm,used directed diffusion(DD)to deliver interest,and used MMAS algorithm to construct a minimum Steiner tree.
该算法采用定向扩散的机制进行兴趣散布;利用MMAS算法构造一个最小Steiner树,源节点的数据发送到构造好的最小Steiner树上,经过融合后传输到sink节点,降低了网络中传输的数据量。
3.
This paper analyses the theoretical basis and realization methods of relational database systems and keyword search technology, proposes content-based similarity calculate method and Minimum Steiner tree based AST query algorithm.
本文对关系数据库系统和关键词查询技术的理论基础和实现方法进行了分析,提出了基于内容的相似度计算方法和基于最小Steiner树求解的AST查询算法。
6) Steiner tree-star
Steiner树-星
补充资料:Steiner曲线
Steiner曲线
Steiner curve
书 从‘点量起的弧民是‘一普rs扩于·整条曲线的长度是1“r·曲率半径为r七一85谊合·曲线所围的面积是s二2兀尸· 该曲线由为田b Ste毗(1798一1863)所研究.S住血姗曲线「S奴血践。.、e;mTe如epa印。溯] 半径为:的圆周上一点当该圆周内切于一个半径为R“3r的圆周滚动时所描出的平面4次代数曲线:模数为。=3的内摆线(hypo哪】oid).在众s-cates直角坐标下,Steiner曲线的方程是 (x,+夕,)’+8 rx(3夕,一x,)十 +18rZ(x,+夕,)一27r‘二0.它有三个尖点(见图).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条