1) fictitious downward continuation of gravity field
重力场的虚拟向下延拓
2) fictitious downward continuation
虚拟向下延拓
1.
Discrete approach with 15′×15′ grid is adopted in order to numerically simulate and calculate the gravitational potential field generated by the homogeneous rotation-symmetric ellipsoid,and it is verified that the method,the fictitious compress-recovery and the fictitious downward continuation of the gravitational field,is reliable and valuable at the relative accuracy level higher than 10~(-4).
采用15′×15′网格离散化手段对均质旋转对称椭球体产生的引力位场进行了数值模拟计算,在相对精度优于10-4的水平上,验证了引力位虚拟压缩恢复法以及重力场虚拟向下延拓法的可靠性和有效性。
3) downward continuation problem of the gravity field
重力场向下延拓问题
4) local fictitious downward continuation
局部虚拟向下延拓
1.
Simulation experiment results support the local fictitious downward continuation approach.
为了检验理论的正确性,选取EGM96模型进行了模拟实验检验,实验结果支持局部虚拟向下延拓法。
5) downward-continued field
向下延拓场
6) downward gravity
重力向下延拓;下降梯度
补充资料:地球外部重力场的延拓
研究地球重力场的一种数学方法。
外部重力场的延拓,主要是指由地面观测数据计算空间某一高度的重力矢量,或由空间观测数据计算地面上的重力矢量。前者称为向上延拓,应用于改正空间飞行器轨道的扰动,提高惯性导航系统的精度;后者称为向下延拓,应用于航空重力测量和卫星重力梯度测量值的归算。
任一点的重力矢量,都由正常重力矢量和同一点的扰动重力矢量两部分组成。前者可以根据正常重力位,用封闭公式计算;后者是数值很小且又不规则的扰动。外部重力场的延拓主要研究扰动重力矢量的解算方法。
延拓问题有不同的解法。上延问题一般可采用:①按广义斯托克斯公式直接解算外部扰动位,采用这种方法需已知地面上的重力异常值。②用分布于参考椭球面上的面密度为:
(△g为地面上的重力异常;N为大地水准面差距;G为地面平均重力;R为地球平均半径)的扰动质量所产生的单层位来解算外部扰动位,采用这种方法需已知地面上的重力异常△g和大地水准面差距N。③用球的泊松积分把地面上扰动位直接延拓到外部空间。由于被积函数递减很快,因此积分区域不需很大,通常可用平面公式计算。采用这种方法需要知道地面上的重力异常、大地水准面差距和垂线偏差值。④球谐函数展开法。把地面上及其外部的扰动位都用一个有限项的球谐函数级数表示,展开式的系数可由地面重力和卫星观测资料一并解出。这种方法计算最简便,但级数收敛很缓慢,并且有限项的展开也不可能完全反映出重力异常场的局部起伏。所以这种方法只能用于上延高度很大而且精度要求不高的情况。
对向下延拓问题可采用的解算方法有:①迭代法。作为向上延拓的逆演,泊松积分变为积分方程,这时必须用迭代法求解。这一方程通常收敛很快。②球谐函数展开法。这种方法与向上延拓的球谐函数展开法相同。
外部重力场的延拓,主要是指由地面观测数据计算空间某一高度的重力矢量,或由空间观测数据计算地面上的重力矢量。前者称为向上延拓,应用于改正空间飞行器轨道的扰动,提高惯性导航系统的精度;后者称为向下延拓,应用于航空重力测量和卫星重力梯度测量值的归算。
任一点的重力矢量,都由正常重力矢量和同一点的扰动重力矢量两部分组成。前者可以根据正常重力位,用封闭公式计算;后者是数值很小且又不规则的扰动。外部重力场的延拓主要研究扰动重力矢量的解算方法。
延拓问题有不同的解法。上延问题一般可采用:①按广义斯托克斯公式直接解算外部扰动位,采用这种方法需已知地面上的重力异常值。②用分布于参考椭球面上的面密度为:
(△g为地面上的重力异常;N为大地水准面差距;G为地面平均重力;R为地球平均半径)的扰动质量所产生的单层位来解算外部扰动位,采用这种方法需已知地面上的重力异常△g和大地水准面差距N。③用球的泊松积分把地面上扰动位直接延拓到外部空间。由于被积函数递减很快,因此积分区域不需很大,通常可用平面公式计算。采用这种方法需要知道地面上的重力异常、大地水准面差距和垂线偏差值。④球谐函数展开法。把地面上及其外部的扰动位都用一个有限项的球谐函数级数表示,展开式的系数可由地面重力和卫星观测资料一并解出。这种方法计算最简便,但级数收敛很缓慢,并且有限项的展开也不可能完全反映出重力异常场的局部起伏。所以这种方法只能用于上延高度很大而且精度要求不高的情况。
对向下延拓问题可采用的解算方法有:①迭代法。作为向上延拓的逆演,泊松积分变为积分方程,这时必须用迭代法求解。这一方程通常收敛很快。②球谐函数展开法。这种方法与向上延拓的球谐函数展开法相同。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条