1) Z-minimal set
Z-极小集
1.
For a general subset system Z,the concept of Z-minimal sets is defined,some characteristics of Z-continuous posets are discussed,the equivalent characterizations between the mapping preserving the Z-minimal sets and the mapping preserving _Z and the Z-supremum of Z-continuous posets are given,so the corresponding extension theorem is made.
对于一般的子集系统Z,引入了Z-极小集的概念,给出了Z-连续偏序集中保Z-极小集与保Z-并和Z间的等价刻划及其有关性质,得到了关于保Z-极小集映射的扩张定理。
2) Quasi Z-minimal Sets
拟Z-极小集
1.
In this paper, We define Quas Z-minimal Sets, the equivalent characterization of the Quasi Z-minimal Sets is introduced, and the mapping preserving Quasi Z-minimal Sets is given, so the two corresponding extention theorems are made by Rudin lemma.
定义了拟Z-极小集,并证明了拟Z-连续Domain的每个元都有拟Z-极小集,在拟Z-连续Domain中,给出了保拟Z-极小集映射的几个等价刻画,并且在此基础上,运用Rudin性质,得到了拟Z-连续Domain上的两个相应扩张定理。
3) extremely small subset
极小子集
1.
By means of the methodology of rough set,different attribute classification methods for decision systems are first analyzed in this paper,and the attribute significance as well as the extremely small subset of the attribute relative reduction caused by a classification variety is discussed.
应用粗糙集的方法,分析决策系统中不同的属性分类方法,以及不同分类方法引起的属性重要性与属性相对约简极小子集的变化情况,寻求属性分类方法与属性约简结果相互影响的内在因素,给出高效的属性分类方法和合理确定约简子集的策略,生成策略对应软件的实现算法,并运用软件实现算法来选取相对约简子集。
4) minimal cut
极小割集
5) minimal set
极小集
1.
The authors introduce two new concepts of L - nested sets which are based on the concepts of minimal set and maximal set where L is a completely distributive lattice.
在L是完全分配格时,借助极小集与极大集的概念引入L集合套概念,它们是[1]中集合套概念的推广,但不同于[1]中的L集合套。
2.
In F lattice,sixteen cut sets of l fuzzy set and corresponding decomposition theorems have been given by the use of maximal set and minimal set.
在 F格 L中 ,利用极小集与极大集可以对 L- fuzzy集给出 1 6种截集的定义及相应的分解定理 ,本文用 3条公理对 1 6种截集给出公理化描述 ,从而揭示了每种截集最本质的三条性
3.
The attractor M which attracts any bounded set the following facts are proved:i) every motion on M is almost periodic;ii) for a∈M, γ(a) =ω(a) is a minimal set.
就修正的Navier-Stokes方程的可吸引任何有界集的吸引子M证明了:i)M上的运动都是几乎周期的;i)对a∈M,〔γ(a)〕=ω(a)是极小集。
6) minimal hitting set
极小碰集
1.
In this paper,an improved genetic algorithm (called MGA) is used to compute minimal hitting sets.
采用改进的遗传算法求解极小碰集问题。
2.
Furthermore, the computing procedure is formalized by combining SE-tree with closed nodes to generate all the minimal hitting sets.
提出一种利用与元素相关联的冲突集个数计算碰集的新方法,并结合带有终止节点的集合枚举树SE-tree形式化地表达计算过程,逐步生成所有的极小碰集。
补充资料:极小集
极小集
minimal set
极小集【而顽加目set;MH皿“M~oeM肋撰c卿1 l)R~nn空间中的极小集是极小曲面(而月面目51止自仗)的推广极小集是Rier姐nn空间M”中的灭维闭子集X。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条