1) Peano's axiom system
Peano公理系统
2) Peano axioms
Peano公理组
3) Peano axioms
Peano公理
1.
One of them deals detailedly with the logical relation between the principle of mathematical induction (type I sa well as type I )and the well-ordering principle under a certain condition and the other introduces an axiom concerning the natural numbers and demonstrates the equivalence between it and the system of Peano axioms.
其一详论在一定条件下,Ⅰ、Ⅱ型数学归纳原理及良序原理之间的逻辑关系:另一则提供一个关于自然数集N的公理并论证它与Peano公理系统的等价性。
4) peano axiom system
Peano自然数公理
1.
Discussions are conducted on the course based on the peano axiom system of natural numbers.
对于以Peano自然数公理系统为基础的《数系理论》课程 ,本文对于在新自然数体系下如何建立与之相应的自然数公理系统及其有关性质进行了比较全面的讨论 ,并在教学上作出了一些有益的探索。
5) axiom system
公理系统
1.
Relations between some axiom systems for matroids and the automorphism groups of a matroid;
拟阵的几个公理系统与其自同构群的关系
2.
Two groups of axioms in the natural axiom system of probability theory are set up.
建立《概率论自然公理系统》中的第 组和第 组公理。
3.
This paper sets forth the process of axiom information theory, and gives its axiom system.
本文阐述了公理信息论的产生 ,并且给出公理信息论的公理系
6) axiomatic system
公理系统
1.
Research on axiomatic systems of Pawlak rough sets;
Pawlak粗糙集的公理系统
2.
Using operator to model constraints,this paper researches such abstract operator logic,analyzes its syntax,semantics,axiomatic system,its natural deduction system and its normalized natural deduction system,provide the theoretical foundation for constrict analysis of hierarchy system.
研究了抽象算子逻辑,并用算子标识约束讨论了抽象算子逻辑的语法、语义、公理系统、自然演绎系统和正规自然演绎系统。
3.
The development of axiomatic approach,the characateristics of axiomatic system and its incompleteness,the use of axiomatic approach in Physics and its position in epistemology are discussed.
讨论了公理化方法的发展,公理系统的特点和公理系统的不完备性,公理化方法在物理学中的借鉴,及其在认识论中的地位,还讨论了公理化方法在物理学中应用的限度,及其在自然科学理论中的最基本要
补充资料:Peano公理
Peano公理
Peano axioms
Peano公理!Peanoa劝哪s;lleaHoaKc“OM“J 由G.Peano在1889年引进的对自然数集N和定义在其上的函数S(后继函数)的五条公理组成的一个系统:l)0‘N; 2)、任N卜S戈〔N; 3)尤6N一卜Sx并0; 4)x6N八夕‘N八Sx二S夕一x=州 5)对任意性质M O〔M八丫x(x任M、Sx任M)~N住M (归纳公理(axiom of illduction)). 在最初的版本中,以]用0代替.R.块dek耐 在1888年提出过类似的公理.Peano的公理是范畴 的,即任何两个满足这组公理的系统(N,S,0)和 (N‘,S‘,O’)是同构的.这个同构对应是由函数/(x、y)决定的,其中 /,(0,0)“0’,.j,(Sx,Sx)“S‘.f’(x,x); f(义,S夕)=f飞x,夕);对夕
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条