说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 希腊几何
1)  Greek geometry
希腊几何
2)  geometric Hashing
几何哈希
1.
It combines geometric Hashing scheme with surface segmentation based on cu rvature analysis.
将基于曲率分析的曲面片形状划分方法和几何哈希相结合 ,提出一种通用的空间曲面匹配算法。
3)  geometric Hashing
几何哈希法
1.
All the current geometric hashing methods are just suitable for the 2D object recognition under affine transformation.
几何哈希法,作为一种有效的模型搜索算法,在物体识别中有着重要的应用。
4)  geometric hashing
几何型哈希法
1.
This paper presents a content-based image retrieval technique based on salientpoints matching and geometric hashing.
提出一种基于点特征匹配和几何型哈希法的图像检索方法。
5)  Geometric Hashing algorithm
几何哈希算法
6)  Greece [英][gri:s]  [美][gris]
希腊
1.
Report on Inspection and Training of Industry Development of Olea europaea in Greece;
希腊油橄榄产业发展培训考察报告
2.
Progress in and Debating on the VAN Earthquake Prediction Method in Greece(Part Two):International Evaluation and Debate;
希腊VAN地震预报方法的进展与争论(Ⅱ)——国际评价与争论
3.
Picasso and Greece: the classical tendency and Greek art influence in 1920-30 s;
毕加索与希腊:二三十年代毕加索的古典倾向及希腊影响
补充资料:希腊几何三大问题
      古希腊几何作图的三大问题是:①化圆为方,求作一正方形,使其面积等于一已知圆;②三等分任意角;③倍立方,求作一立方体,使其体积是一已知立方体的两倍。这些问题的难处,是作图只许用直尺(没有刻度,只能作直线的尺)和圆规。经过两千多年的探索,最后才证明在尺规的限制下,根本不可能作出所要求的图形。
  
  希腊人强调作图只能用直尺圆规,有下列原因。①希腊几何的基本精神,是从极少的基本假定(定义、公理、公设)出发,推导出尽可能多的命题。对于作图工具,自然也相应地限制到不能再少的程度。②受柏拉图哲学思想的影响。柏拉图片面强调数学在训练智力方面的作用而忽视其实用价值。他主张通过几何学习达到训练逻辑思维的目的,因此工具要有所限制,正象体育竞赛要有器械的限制一样。③以毕达哥拉斯学派为代表的希腊人认为圆是最完美的平面图形,圆和直线是几何学最基本的研究对象。有了尺规,圆和直线已经能够作出,因此就规定只使用这两种工具。历史上最早明确提出尺规限制的是伊诺皮迪斯,以后逐渐成为一种公约,最后总结在欧几里得的《几何原本》之中。
  
  圆和正方形都是常见的图形,怎样用尺规作一个正方形与已知圆等积?在历史上,也许没有任何一个几何问题象这个"化圆为方"问题那样强烈地引起人们的兴趣。早在公元前5世纪就有许多人研究这个问题,希腊人对于这种活动用一个专门的字""来表示,意思是"献身于化圆为方问题",可见事情相当普遍。这问题的最早研究者是安纳萨戈拉斯,他因"不敬神"的罪名被捕入狱,在狱中潜心研究化圆为方问题。以后著名的研究者有希波克拉底、安提丰、希皮亚斯等人。安提丰提出一种"穷竭法",是近代极限论的雏形。先作圆内接正方形(或正6边形),然后每次将边数加倍,得内接8、16、32、...边形,他相信"最后"的正多边形必与圆周重合。这样就可以化圆为方了。结论是错误的,然而却提供了求圆面积的近似方法,成为阿基米德计算圆周率方法的先导。与中国刘徽的割圆术不谋而合。
  
  用尺规二等分一个角是轻而易举的,对于某些角,如90°、135°、180°,三等分也不难。自然会提出三等分任意角的问题。如能将60°角三等分,就可以作出正18边形和正9边形,三等分角问题就是由这一类问题引起的。关于倍立方问题的起源,有两个神话传说。第一个说鼠疫袭击提洛岛(爱琴海上小岛),一个预言者说已经得到神的谕示,必须将立方形的阿波罗祭坛体积加倍,瘟疫方能停息。一个工匠简单地将坛的各边加倍(体积变成原来的8倍),这并不符合神的意旨,因此瘟疫更加猖獗。错误发现后,希腊人将这个"提洛问题"去请教柏拉图。柏拉图说:神的真正意图是想使希腊人为忽视几何学而感到羞愧。另一个故事说克里特王米诺斯为儿子修坟,命令将原来设计的体积加倍,但仍保持立方的形状。
  
  公元前5世纪,雅典的"智人学派"以上述三大问题为中心,开展研究。正因为不能用尺规来解决,常常使人闯入新的领域中去。例如激发了圆锥曲线、割圆曲线以及三、四次代数曲数的发现。
  
  17世纪解析几何建立以后,尺规作图的可能性才有了准则。1837年P.L.旺策尔给出三等分任意角和倍立方不可能用尺规作图的证明,1882年C.L.F.von林德曼证明了 π的超越性,化圆为方的不可能性也得以确立。1895年(C.)F.克莱因总结了前人的研究,著《几何三大问题》(中译本,1930)一书,给出三大问题不可能用尺规来作图的简明证法,彻底解决了两千多年的悬案。
  
  虽然如此,还是有许多人不管这些证明,想压倒前人所有的工作。他们宣称自己已解决了三大问题中的某一个,实际上他们并不了解所设的条件和不可解的道理。三大问题不能解决,关键在工具的限制,如果不限工具,那就根本不是什么难题,而且早已解决。例如阿基米德就曾用巧妙的方法三等分任意角。下面为了叙述简单,将原题稍加修改。在直尺边缘上添加一点p,命尺端为O。设所要三等分的角是∠ACB,以C为心,Op为半径作半圆交角边于A、B;使O点在CA延线上移动,p点在圆周上移动,当尺通过B时,联OpB(见图)。由于Op=pC=CB,易知
  。这里使用的工具已不限于尺规,而且作图方法也与公设不合。另外两个问题也可以用别的工具解决。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条