1) F-Césaro uniform mixing
F-Césaro一致混合
1.
In this paper,we introduce the notions of family F-ergodic,family F-strong-mixing,family F-weak-mixing,family F-2-mixing,family F-uniform mixing and family F-Césaro uniform mixing,we study their properties,judging and correlation,moreover,we discuss the description of F-ergodic and F-mixing with respect to the invariant measure for continuous transformation.
本文给出族F-遍历,族F-强混合,族F-弱混合,族F-2混合,族F-一致混合和族F-Césaro一致混合的概念,研究了它们的性质、判定及相互关系,并且讨论了对于连续变换的不变测度的族F-遍历和族F-混合的刻划。
2) F-uniform mixing
F-一致混合
1.
In this paper,we introduce the notions of family F-ergodic,family F-strong-mixing,family F-weak-mixing,family F-2-mixing,family F-uniform mixing and family F-Césaro uniform mixing,we study their properties,judging and correlation,moreover,we discuss the description of F-ergodic and F-mixing with respect to the invariant measure for continuous transformation.
本文给出族F-遍历,族F-强混合,族F-弱混合,族F-2混合,族F-一致混合和族F-Césaro一致混合的概念,研究了它们的性质、判定及相互关系,并且讨论了对于连续变换的不变测度的族F-遍历和族F-混合的刻划。
3) f-uniform graph
f一致图
4) uniformly mixing sequences
一致混合序列
5) uniformly Férchet differentiable
一致F可微
6) Uniform Fuzzy Power Group
一致F幂群
补充资料:Carathéodory区域
Carathéodory区域
Carath^odory domain
C翻阁.胡卿区域l(知radl睡回衅d.的越叭枪脚.哪明06月aeT‘〕 复平面中满足如下条件的有界单连通区域eG的边界同吞的余集中包含点犯的分支G,的边界相同.由Jordan曲线围成的区域是C盯ath么x王ory区卜域的例子.每个Carath么xlory区域可表示为单连通区域递减收敛序列{G,}的核, 云〔玩十、〔瓦、、c认,。二1,2,.而且存在这种序列的每个区域,都是C盯ath改吐〕ry区域( Carath德记ory定理(Carath6Odory theorem),见!11).【补注】设G,是复平面中一列单连通区域.假定每个区域都包含以:o为圆心的一个固定圆盘D.令£二{::存在邻域N使得对所有充分大的。有NCG,{则E是开集.设6、是E中包含爪、的分支,这一区域称为序列{G,}(关于点:。)的替‘keme”·称序列{G。}咚攀舌认。,如果{G。}的每一子列关于:。具有同{G。}本身相同的核见【2]杨维奇译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条