1) Matsubara Green function theory
Matsubara格林函数理论
1.
The transverse acoustic phonon excitation is studied through Matsubara Green function theory,and the transverse acoustic phonon dispersion curve is calculated at the main symmetric point and on the symmetric line in the first Brillouin zone.
利用Matsubara格林函数理论研究了系统的横向声频支声子激发,计算了布里渊区的主要对称点线上的横向声频支声子色散曲线,发现在第一布里渊区的Σ线上,小波矢区(Γ附近kxa<0。
2.
The longitudinal acoustic phonon excitation is investigated based on the Matsubara Green function theory.
利用Matsubara格林函数理论研究了系统的纵向声频支声子激发,计算了布里渊区的主要对称点线上的纵向声频支声子色散曲线。
2) the two-time Green's function theory
格林函数理论
3) elastic scattering Green's function theory
弹性散射格林函数理论
5) Green-function
格林函数
1.
The analytic solution of Green-function is presented under the boundary conditions,and the relationship between absortion factor Δμ_a and flux J_n is figured out.
进一步改进了已有物理模型,从理论上解决了三维有限体积内光子密度波扩散方程的求解问题,得到了长方体边界条件下的格林函数的解析解,给出了实验可测量光通量与待测物吸收系数改变量之间可进行数值计算的表达式。
2.
The applications of Green-functions with diffusion equation are summarized.
在分析有关格林函数在光子密度波扩散方程中应用情况的基础上,根据所设定的实验模型要求,将展开法与电像法相结合求解了满足扩散方程的格林函数,并详细推导了获得该函数的过程。
3.
Within a random phase approximation,the quantum Heisenberg ferromagnetic chain with long-range interaction proportional to r-p was studied by Green-function method.
在无规相近似理论框架下,运用格林函数方法研究了一维带有长程有序作用的量子海森堡铁磁模型,结果发现,如果自旋相互作用采用指数衰变r-p形式,当1
6) Green function
格林函数
1.
Approximation of time-domain Green function for finite water depth and its derivatives;
时域有限水深格林函数及其导数的数值计算
2.
Application of quasi-green function method for each operator;
准格林函数方法在各算子中的应用
3.
Approximation of time-domain Green function in finite water depth;
时域有限水深格林函数的多项式展开计算方法
补充资料:格林函数
物理学中的一个重要函数。在数学物理方法中,格林函数又称为源函数或影响函数,是英国人G.格林于1828年引入的。
物理学中单体量子理论所使用的格林函数,其定义稍有扩充。它满足方程: (E-H)G(r,r┡,E)=δ(r-r┡),其中H是单粒子哈密顿量,可以包括外场及杂质势等。单格林函数在无序体系研究中有重要应用,例如用平均T矩阵近似、相干势近似求态密度。
多体量子理论的格林函数自20世纪60年代以来已成为凝聚态理论研究的有力工具。目前物理当中格林函数常指用于研究大量相互作用粒子组成的体系的多体格林函数。多体格林函数代表某时某地向体系外加一个粒子,又于它时它地出现的几率振幅。格林函数描写粒子的传播行为,又称为传播子。
为了研究多粒子体系在大于绝对零度时的平衡态行为,引入了温度格林函数。由于温度的倒数和虚时间有形式上的对应,温度格林函数也称为虚时间格林函数。为了研究T>0K的非平衡态行为,引入了T>0K的时间格林函数及闭路格林函数。
在量子场论中计算具体物理过程的矩阵元时,也常出现格林函数,其物理意义也是代表粒子传播的几率振幅。由于多体格林函数T=0K时对应于它,所以量子场论中的费因曼图解法(见费因曼图)也可用于多体格林函数。重正化群方法近十年来也用于凝聚态研究中,例如近藤效应、一维导体。
参考书目
E.N.Economou, Green's Function in Quantum Physics, Springer-Verlag, Berlin, Heidelberg,1979.
A.A.阿布里科索夫等著,郝柏林译:《统计物理学中的量子场论方法》,科学出版社,北京,1963。
G.D.Mahan,Many particle Physics, Plenum Press, New York and london, 1981.
物理学中单体量子理论所使用的格林函数,其定义稍有扩充。它满足方程: (E-H)G(r,r┡,E)=δ(r-r┡),其中H是单粒子哈密顿量,可以包括外场及杂质势等。单格林函数在无序体系研究中有重要应用,例如用平均T矩阵近似、相干势近似求态密度。
多体量子理论的格林函数自20世纪60年代以来已成为凝聚态理论研究的有力工具。目前物理当中格林函数常指用于研究大量相互作用粒子组成的体系的多体格林函数。多体格林函数代表某时某地向体系外加一个粒子,又于它时它地出现的几率振幅。格林函数描写粒子的传播行为,又称为传播子。
为了研究多粒子体系在大于绝对零度时的平衡态行为,引入了温度格林函数。由于温度的倒数和虚时间有形式上的对应,温度格林函数也称为虚时间格林函数。为了研究T>0K的非平衡态行为,引入了T>0K的时间格林函数及闭路格林函数。
在量子场论中计算具体物理过程的矩阵元时,也常出现格林函数,其物理意义也是代表粒子传播的几率振幅。由于多体格林函数T=0K时对应于它,所以量子场论中的费因曼图解法(见费因曼图)也可用于多体格林函数。重正化群方法近十年来也用于凝聚态研究中,例如近藤效应、一维导体。
参考书目
E.N.Economou, Green's Function in Quantum Physics, Springer-Verlag, Berlin, Heidelberg,1979.
A.A.阿布里科索夫等著,郝柏林译:《统计物理学中的量子场论方法》,科学出版社,北京,1963。
G.D.Mahan,Many particle Physics, Plenum Press, New York and london, 1981.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条