说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 基础资产
1)  basic asset
基础资产
1.
In this paper we set up the evaluation system and method of the quality of the basic asset based on the interval AHP and this method is proved highly effective by an example.
本文建立了基于区间AHP法的基础资产的评价体系和方法,并用实例证明了方法的有效性。
2)  assets basic
资产基础
3)  assets fundamen tality
资产基础性
4)  mineral base
矿产资源基础
5)  value based on asset
资产价值基础法
6)  tax-calculating criterion for assets
资产计税基础
补充资料:基础资产价格变化的随机特征


基础资产价格变化的随机特征


  【基础资产价格变化的随机特征】我们以不支付股息的股票为例,来讨论股票价格变化的随机过程特征。 如果能够把股票价格的变化看作遵循推广后的或一般化的维纳过程,即具有常数期望偏差率和常数方差率,那么,就非常有助于我们的分析。但是,根据这样的假设而构造随机过程模型将会忽略股票价格变化的根本性特征。这主要是因为投资者从股票投资中要求获得的预期收益百分比一般独立于股票价格的变化。例如,当股票价格为10美元时,如果投资者要求获得的年预期收益率为14%;那么,在其他条件不变时,当股票价格为50美元时,投资者也会要求得到14%的年预期收益率。 显然,常数预期偏差率的假设是不恰当的,豁要用更为合适的假定来加以修正替换。 如果我们以股票价格的一定比例来表示预期偏差,并假设这种预期偏差是常数,以此来取代上述假定,就可以解决这一间题。新的假设意味着:如果以S表示股票价格,当某种常数参数值为拜时,股票价格s的期望偏差率就是泌。因而,在一很小的时间区间里,S的预期增长将是两△t。以小数形式表示的参数拌就是从股票投资中获得的预期收益率。 如果股票价格的方差率始终为零,则上述模型就表示 dS二声记t或者所以dS百二衅S二凡砂(5)式中,凡表示时间为零时的初始股票价格。方程式(5.5)说明,当方差率为零时,股票价格以每单位时间拌的连续复利率上涨。 然而,在股票市场上,股票价格实际上是表现出易变性特征的。对于这种现象,一种合理的假设是,不管股票价格如何变化,把很短时间区间△t中百分比收益的方差视为相同。换句话说,在投资者看来,不论股票价格是50美元还是10美元,其投资于股票的百分比收益具有同等的不确定性。将了定义为与股票价格按比例变化的方差率,那么了△t就表示在时间区间△t中,与股票价格按比例变化的方差,而了矛△t则表示在时间区间△t中,股票价格S实际变化的方差。因而股票价格S的瞬时方差率可以表示为了矛。 上述分析说明股票价格的变化可以由伊托过程来加以描述,因为伊托过程具有瞬时期望偏差率为泌,以及瞬时方差率为了梦。据此,股票价格的变动特征可以用下式表示: dS二川记t+。S如或者dS号罕二扛Ot十口O团口(6)方程(6)是采用得最为广泛的描述股票价格变化的模型。其中变量口一般就是指股票价格易变性,另一变量拌则表示预期收益率。 例3: 以一种不支付股息的股票为例,每年的易变性为30%,每年产生的预期收益率为15%,以连续复利形式计算。也就是说拌二0.15,和。=0.30。因此,股票价格变动的随机特征可由下式来刻划描述:馨=0.巧dt+0·30dZ ,
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条