说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义Lipschitz函效
1)  generalized Lipschitz function
广义Lipschitz函效
2)  generalized Lipschitz
广义Lipschitz
1.
In uniformly smooth Banach spaces,we have studied the convergence problem on the zeros of generalized Lipschitz phi-quasi-accretive operators by Ishikawa iterative sequence.
在一致光滑Banach空间中研究用Ishikawa迭代过程来逼近一类广义LipschitzΦ-拟增生算子方程解的收敛问题。
2.
Let 1<q≤2,suppose T is a generalized Lipschitzian Φ-strongly pseudocontractive self-mapping on a nonempty closed convex subset of a real quniformly smooth Banach space E,and has a fixed point.
设1
3.
The Mann iterative approximation sequences of fixed points and solutions for generalized Lipschitz Φ-pseudocontractive mappings and Φ-accretive operators have been shown that it strongly converges to the unique fixed point and the solution in Hilbert space.
研究了Hilbert空间中广义LipschitzΦ-伪压缩映射的不动点和广义LipschitzΦ-强增生算子方程解的Mann迭代逼近。
3)  generalized Lipschitzian
广义Lipschitz
1.
In q uniformly smooth Banach space,the paper studies the converge of Mann iteration for generalized LipschitzianΦ-strong pseudo-contractive and strong accretive mappings and the results improved and extended corresponding results at present.
在q一致光滑Banach空间中,研究了一类广义LipschitzΦ-强伪压缩映射和Φ-强增生映射的Mann迭代收敛问题,所得结果改进和扩展了目前的相关结果。
4)  generalized Lipschitzian
广义Lipschitz的
1.
Iterative approximation for solutions of a class of variational inclusions of k-subaccretive type with generalized Lipschitzian mappings
一类具广义Lipschitz的k-次增生型变分包含解的迭代逼近
5)  Generalized Lipschitz condition
广义Lipschitz条件
1.
Iterative Process for Certain Nonlinear Mappings with Generalized Lipschitz Condition;
一类具有广义Lipschitz条件的非线性映象的迭代过程
6)  generalized Lipschitzian mapping
广义Lipschitz映射
补充资料:Lipschitz积分条件


Lipschitz积分条件
Lipsdnte integral condition

U尹如忱积分条件〔U脚而匕加魄阿“旧击柱门;刀‘四.职yc加哪似犯印目1.刃oel 以积分度量给出的关于函数增长性态的一种限制.称空间L,(a,b)(p笋l)中的函数f在[a,b1上满足具有常数M>O的二>0阶UpschjtZ积分条件,如果对所有h钊0,b一a),有 {了“,,(一卜,(·)},己·}”’一;(·)记作f〔LiP、(:,夕),f〔H二(M)或f任LiP(“,尸),f〔H二·对于周期函数(以b一a为周期)情形,可类似地定义Li讲ehitZ积分条件,只是不等式(*)中的积分上限b一h必须代之以b.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条