说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分次Koethe根
1)  graded Koethe radical
分次Koethe根
1.
We show that r_G(B)=[W,r_G(A)V]=[Wr_G(A),V],r_G(A)=(V,r_G(B)W)=(Vr_G(B),W), where r_G is one of the following graded radicals:the graded prime radical;the graded Jacobson radical;the graded Koethe radical;the graded Levitzki radical;the graded strongly prime radical;the graded uniformly strongly prime radical.
本文证明τG(B):[W,ΥG(A)V]=【WΥc(A),V],ΥG(A)=(V,ΥG(B)W)=(VΥG(B),W)其中ΥG代表P_G(分次素根),J_G(分次Jacobson根),K_G(分次Koethe根),L_G(分次Levitzki根)和s_G(分次强素根),us_G(分次一致强素根)。
2)  Koethe radical
Koethe根
3)  graded Jacobson radical
分次Jacobson根
1.
The graded Jacobson radical of graded algebra;
分次代数的分次Jacobson根
2.
Making use of the classical methods in ring theory, we obtain the relations with regard to graded Jacobson radical and graded prime radical between a group graded ring and its finite normalized graded extension ring.
利用经典环论方法,得到一个群分次环与其有限正规分次扩张环之间关于分次Jacobson根和分次素根的关系,同时,给出了分次情形的Cutting down定理和Lying over定理。
3.
We show that r_G(B)=[W,r_G(A)V]=[Wr_G(A),V],r_G(A)=(V,r_G(B)W)=(Vr_G(B),W), where r_G is one of the following graded radicals:the graded prime radical;the graded Jacobson radical;the graded Koethe radical;the graded Levitzki radical;the graded strongly prime radical;the graded uniformly strongly prime radical.
本文证明τG(B):[W,ΥG(A)V]=【WΥc(A),V],ΥG(A)=(V,ΥG(B)W)=(VΥG(B),W)其中ΥG代表P_G(分次素根),J_G(分次Jacobson根),K_G(分次Koethe根),L_G(分次Levitzki根)和s_G(分次强素根),us_G(分次一致强素根)。
4)  graded prime radical
分次素根
1.
Making use of the classical methods in ring theory, we obtain the relations with regard to graded Jacobson radical and graded prime radical between a group graded ring and its finite normalized graded extension ring.
利用经典环论方法,得到一个群分次环与其有限正规分次扩张环之间关于分次Jacobson根和分次素根的关系,同时,给出了分次情形的Cutting down定理和Lying over定理。
2.
We show that r_G(B)=[W,r_G(A)V]=[Wr_G(A),V],r_G(A)=(V,r_G(B)W)=(Vr_G(B),W), where r_G is one of the following graded radicals:the graded prime radical;the graded Jacobson radical;the graded Koethe radical;the graded Levitzki radical;the graded strongly prime radical;the graded uniformly strongly prime radical.
本文证明τG(B):[W,ΥG(A)V]=【WΥc(A),V],ΥG(A)=(V,ΥG(B)W)=(VΥG(B),W)其中ΥG代表P_G(分次素根),J_G(分次Jacobson根),K_G(分次Koethe根),L_G(分次Levitzki根)和s_G(分次强素根),us_G(分次一致强素根)。
5)  graded radical
分次根
1.
In this paper,three ways to determine graded radicals by the properties of some element in e component are constructed for general Monoid graded rings.
对于一般Monoid分次环R = σ∈MRσ,构造了三种由其e 分量Re 的某些元素性质确定分次根的方法 。
2.
In the category of general monoid graded rings, we propose a new graded radical, i.
在一般Monoid分次环范畴中定义了一种新的分次根———分次P 根 ,得到分次环的一个结构定理 ,证明分次P 根是一个分次特殊根 ,给出了它的分次模刻划 ,讨论了它与自反P 根的关
3.
Meawhile,we give the structure theorems of graded Semisimple graded rings corresponding these graded radicals and show the radical of A and A e are related closely.
在一般Monoid—分次环 (未必有 1)范畴中 ,给出了分次Bear根 ,分次Koethe根 ,分次Levitizki根和分次Brown -McCoy -根的元素特性 ,并分别给出了对应于这几个根的分次半单环的结构定理 ,指出了分次环A = x∈MAx 的分次根和结合环Ae 的根之间的密切关系。
6)  Graded σ-radical
分次σ-根
补充资料:分次
1.分定等次或位次。 2.指分为几次。 3.星辰运行的度次。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条