1) equation of event horizon surface
视界面方程
1.
Using coordinate transformation,we study the event horizon of accelerating non-stationary black holes,the equation of event horizon surface is calculated out.
采用坐标变换的方法,研究几种加速运动动态黑洞的事件视界,得到了黑洞的视界面方程。
3) interface algebra equation
界面方程
4) Interfaces/Mechanical equilibrium equation of interfaces
界面/界面力平衡方程
5) equation of interfacial motion
界面运动方程
1.
The interface of the martensite/parent was suggested as the attractor based on the phase plane analyses from the classical equation of interfacial motion, which is different from the soliton model of the ideal martensite/parent interface.
从经典的马氏体相界面运动方程出发,利用相平面分析,证明具有界面摩擦的马氏体相界面是吸引子,与理想的马氏体相界面的孤立子特征不同。
6) interfacial state equation
界面状态方程
1.
Based on the interfacial state equation of (WO)W Liquid Surfactant Membrane proposed by us,the effects of the carrier on the interfacial tension between the emulsion and the outer water phase were studied.
在文献[1]中提出的液膜体系界面状态方程的基础上,考虑了载体对乳状液-水相间界面张力的影响,发现膜相中载体的存在会使得界面张力降低,说明载体能够吸附于界面并同表面活性剂发生界面上的“竞争吸附”,从而提出了一个新的液膜体系界面状态方程,利用该方程可使界面张力的预测值与实验值吻合较好。
2.
Based on Langmuir adsorption isothermal equation, and with the concept or effective concentration of surfactant in membrane phase, a new interfacial state equation in LSM system was proposed.
在Langmuir等温吸附式的基础上,利用“有效浓度”的概念,推导出了乳化液膜体系的界面状态方程。
补充资料:泊松方程和拉普拉斯方程
势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
简史 1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
,
式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
。
在各分区的公共界面上,V满足边值关系
式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
静磁场的泊松方程和拉普拉斯方程 在SI制中,静磁场满足的方程为
式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
参考书目
郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
简史 1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
,
式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
。
在各分区的公共界面上,V满足边值关系
式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
静磁场的泊松方程和拉普拉斯方程 在SI制中,静磁场满足的方程为
式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
参考书目
郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条