1) Obstacle optimal control problem
障碍最优控制问题
2) optimal control problem
最优控制问题
1.
Optimal control problems have been widely met in all kinds of practical problems, such as, temperature control problems, air pollution control problems, Stokes flow control problems, electrochemical machining design problems, etc.
最优控制问题在现实生活中广泛存在,如温度控制问题、空气污染控制问题、Stokes流控制问题和电气化学机器设计问题等等。
2.
In this paper,we study adaptive finite element discretization schemes for an optimal control problem governed by elliptic PDE with an integral constraint for the state with Neumann-edge,with the constraints K = {y∈H~1(Ω):∫_((?)Ω)y≥γ}.
本文研究状态变量在区域边界上积分受限的椭圆型PDE的Neumann边界的最优控制问题,其控制集是K={y∈H~1(Ω):∫_((?)Ω)y≥γ}。
3.
A novel numerical method for solving optimal control problems based on ordinary differential equations(ODE) or differential-algebra equations(DAE) was proposed.
提出了一种新的基于直接转化法的求解基于常微分方程(ODE)和微分代数方程(DAE)的最优控制问题的数值方法。
3) optimal control problems
最优控制问题
1.
In this paper,we introduce optimal control problems that are governed by integro-differential equations.
对积分微分方程的最优控制问题进行了介绍。
2.
Superconvergence and recovery a posteriori error estimates of the finite element approximation for general convex optimal control problems are investigated in this paper.
本文讨论了有限元方法解一般凸最优控制问题的超收敛性和重构型后验误差估计。
3.
In general, most of the optimal control problems that we are interested in can be symbolically written in the following form: (OCP)s.
一般而言,我们所关心的最优控制问题大多数都可以表示成如下符号形式:(OCP)s。
4) problem of GLQ
GLQ最优控制问题
6) obstacle problem
障碍问题
1.
On Elliptic Equations with Discontinuous Nonlinearity and Obstacle Problem;
非线性项不连续椭圆方程与障碍问题的研究
2.
The existence of positive solution for a class of nonlinear elliptic obstacle problem was discussed on a bounded domain Ω R N(N≥3).
在一个有界区域Ω RN(N≥ 3)上讨论了一类非线性椭圆算子障碍问题在容许集合 Rψ={ v∈W1,p0 (Ω)∶ v≥ ψ a。
补充资料:控制论(见控制论哲学问题)
控制论(见控制论哲学问题)
Cybernetics
kongzhllun控制论(C了ber二tics)见拉制论哲学问题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条