1) coupled fixed point theorems
耦合不动点定理
1.
Our analysis rely on a coupled system of nonlinear fractional differential equations and coupled fixed point theorems.
首先应用耦合不动点定理及耦合的下、上拟解方法证明非线性分数阶微分方程系统正耦合拟解的存在性,然后应用耦合不动点定理证明其正解的唯一性。
2) coupled fixed point
耦合不动点
1.
Theorems of coupled fixed point and its iteration of mixed monotone maps;
混合单调映象的耦合不动点及其迭代定理
2.
By using point valued method for set-valued mappings in Hilbert space,coupled fixed points theorem for asymptotically nonexpansive mappings of semi-compact and noncontinous binary set-valued and convergence of iterative sequence are obtained.
在Hilbert空间中利用集值映象点值化方法,得到了一类非连续二元集值渐近非扩张映象的耦合不动点集定理和迭代列的收敛性。
3.
In strictly convex Banach space,there is set F(T) of coupled fixed points of T for nonexpansive mapping,and it is a closed convex set.
在严格凸Banach空间中研究了非扩张映象T的耦合不动点集F(T)的闭凸性,获得了当F(T)是Hilbert空间中的闭线性子空间时,Ishikawa迭代的极限元与其初始元的最佳逼近元之间的关系。
3) couple fixed point
耦合不动点
1.
The couple fixed point of set-valued nonexpansive mappings in hilbert space;
Hilbert空间集值非扩张映象的耦合不动点
2.
The existence and approximations theorem for approximations couple fixed point of semi compact nonexpansive mappings;
半紧非扩张映象的耦合不动点及其逼近定理
3.
The existence of the couple fixed points of a discontinuous mixed monotone multifunction is discussed,and the form of the couple fixed point is also given.
在赋范线性空间中引入单调弱闭集等概念 ,讨论了不具有任意连续性的混合单调集值映射耦合不动点的存在性问题 ,并且给出了耦合不动点的求解步骤以及它的构造形式。
4) coupled fixed points
耦合不动点
1.
To study that minimal and maximal fixed point problem for strict-set-contraction mappings in product spaces,and to generalize that coupled fixed points theorems in 1 ,and to obtain some new results.
研究了乘积空间中严格集压缩映象的极大极小不动点问题,推广了文〔1〕中获得的耦合不动点定理,并且得到了一些新的结果
2.
The existence and iterative method of maximal and minimal coupled fixed points for a kind of mixed monotone operators are given.
设E是半序Banach空间,本文在空间C[I,E]中利用锥理论和单调迭代技巧,给出了混合单调算子最小最大耦合不动点存在性定理及其迭代求法。
3.
In this paper, the skew-increasing operators and their coupled fixed points are defined.
本文定义了斜增算子及其耦合不动点 ,利用扩展算子的方法证明了斜增算子的耦合不动点定理 ,并给出了迭代公式。
6) common couple fixed point
公共耦合不动点
1.
A group of binary mappings is studied and the existence,iterative sequence and estimation formula of rate of convergence for common couple fixed point of multivariate mappings are obtained in complete metric space.
研究了一类二元映象组,并得到了这类映象组的公共耦合不动点存在性、迭代式及其收敛速率估计公式。
补充资料:Borel不动点定理
Borel不动点定理
Borel fixed - point theorem
B吮l不动点定理{B.限l五xe小州nt价e僻m二匆卿,T侧邓吧,f.01”聊叉B“狱班滋n卜.王j 设F为代数闭域kl二非空完全代数簇,正则地作用于犷上的连通可解代数群G(见变换的代数群扭1罗-braic goup of transformat一ons))在卜中有不动点.由这个定理可以推出代数群的B.耽l子群(Borel sub-grouP)是共扼的(Bore卜MOI洲)叉)B定理(Borel一Moro-zov theorem)),不动点定理是A.Borel([lj)证明的.Borel定理可以推广到任意域k(不一定代数封闭卜设F为在域k上定义的完全簇若连通可解k分裂群(人一sPlit grouP)G正则地作用在F上,则有理人点集V(k)或者为空集,或者它包含G的一个不动点.因此推广的Bore]子群共扼性定理是:若域k是完满的,则一个连通人定义的代数群H的极大连通可解北可裂子群,在H的k点构成的群中元素作用下互相共辘(f21),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条