1) one-dimentional elliptic equation with boundary conditions
一维椭圆方程边值问题
1.
In this paper,a kind of difference method for soloving one-dimentional elliptic equation with boundary conditions is studied.
本文研究一维椭圆方程边值问题的差分方法,利用Lagrange插值理论与积分因子技巧,发展了一套有效的高精度算法,对非等距节点和等距节点,其精度分别可达O(h~4)和O(h~5)。
2) 2nd order elliptic boundary value problem
二阶椭圆方程边值问题
1.
In this paper,we use Littlewood Palay decomposition and Besov spaces theory to give a systematic study in regularity property problem for 2nd order elliptic boundary value problem with non smooth coefficients.
本文利用 L itterwood- Palay分解及 Besov空间理论研究了 C∞ -区域上具非光滑系数的二阶椭圆方程边值问题的 Besov正则性问题。
3) nonsymmetric elliptic problem
非对称椭圆微分方程边值问题
4) elliptic boundary value problem
椭圆边值问题
1.
Based on the new assumption and lemma,we prove the convergence of the nonsymmetric and indefinite elliptic boundary value problems easily.
通过对对称正定双线性形式的扰动分析,得到了一个新的对称正定椭圆边值问题与非对称不定椭圆边值问题的误差减少算子的关系式。
2.
This paper discusses the existence of positive radial solutions for nonlinear elliptic boundary value problem in exterior domain Ω= {x ∈ RN|||x||> R}:where g(r) and f(u) are nonnegative continuous functions.
本文讨论球外部区域Ω={x∈RN||x|>R}上非线性椭圆边值问题正径向解的存在性,其中g(r),f(u)为非负连续函数。
3.
This paper discusses the existence of positive radial solutions for nonlinear elliptic boundary value problem ??u + a(|x|)u = g(|x|)f(u), u|? = 0, ? in annular domain where a(r) ∈ C[R1,R2], g(r) and f(u) are nonnegative continuous functions.
讨论环形区域?={x∈RN|R1<|x|
5) elliptic boundary value problems
椭圆型边值问题
1.
Existence of solution and compare method of elliptic boundary value problems;
椭圆型边值问题的比较方法及解的存在性
6) 2-D harmonic first boundary value problem
二维调和方程第一边值问题
补充资料:椭圆型方程边值问题
椭圆型方程边值问题
oundary value problem, elliptic equations
椭口型方程边值问题l加犯nda介司uep汕lem,eIU师ceq.ati哪;冲留,脚引叫班,助.”月““用,沈加璐u介目圈曰旧l求椭圆型方程 之少瓷轰+补斋+cu一,、l) 叭k=O,丹,U丹k理之ov‘,I在区域D中的正则解u的问题,使u在D的边界r上满足某些附加条件.这里风*,b:,c和f都是D上的已知函数. 经典的边值问题是下述问题的特殊情形:求方程(l)的在D中正则的解,使其在边界r上满足条件 du.,_。 a等十bu=g,(2、 一dI、月其中d/dl表示沿某个方向取微分,a,b和g是给定的r上的连续函数,且在r上处处有}al+lb!>O(见【l]). 当a“0,b=l时边值问题是肠ri山let问题(Dirich】et Problem);当b=0,a=l时就得到斜导数问题(见偏微分方程,斜导数问题(differential equation;Partial,Problem of oblique derivatives));如果l是余法线方向,则就成为Ne哑ann问题(Neumann prob-lem).如果r一瓦U瓦,其中r,和几是r的不相交的开子集,而云n元或者是空的,或者是一个(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条