说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义集值映象
1)  Generalized set-vealued mapping
广义集值映象
2)  Generalized set-valued φ-strongly accretive type mapping
广义集值φ-强增生映象
3)  set-valued mapping
集值映象
1.
A system of generalized variational inclusions for set-valued mapping;
关于集值映象的广义变分包含组
2.
The auxiliary principle technique is extended to study a class of generalized strongly nonlinear mixed variational-like inequalities for set-valued mappings without compact values.
延拓辅助原理的技巧研究一类取非紧值的集值映象的广义强非线性混合似变分不等式。
3.
Under the conditions of compatibility or sub-compatibility between a set-valued mappingand a single-valued mapping, the existence of cotnnlon fixed points for two set-valued mapping and a single-valued mapping in complete metric space is discussed.
在集值映象与单值映象相容或次相容的条件下,讨论了度量空间中两个集值映象和一个单位映象的公共不动点的存在性,改进和推广了一些相应结果。
4)  Set-valued mapping pair
集值映象
1.
Under the conditions of compatibility or sub-compatibility between a single-valued mapping and a set-valued mapping,a necessary and sufficient condition for set-valued mapping pair and single-valued mapping which have the common fixed point in complete convex metric space are given.
在单值映象与集值映象相容或次相容的条件下,给出了完备凸度量空间中集值映象对与单值映象存在公共不动点的一个充要条件,改进和推广了某些已知结果。
5)  set valued mapping
集值映象
1.
By using the fixed point theorem, they proved the existence theorem of solution for this kind of nonlinear variational Inclusion problem with the set valued mapping in Hilbert spaces.
研究了一类定义在Hilbert空间内的广义集值映象非线性变分包含问题 。
2.
The purpose is to study the existence of fixed point theories for set valued mappings in B metric space.
讨论了B度量空间中一些集值映象的不动点的存在性问题 ,得到了一些新的不动点定
3.
The existences of common fixed points and fixed points for set valued mappings in a complete normed space are discussed.
在更一般的条件下,研究了完备度量空间中集值映象的重合点和不动点存在性问
6)  multivalued mappings
集值映象
1.
The paper introduces and studies a class of systems of variational inequalities with multivalued mappings.
利用投影方法研究了一类集值映象变分不等式组解的问题,给出了其解的迭代算法,并证明了由迭代算法生成的迭代序列的收敛性。
补充资料:广义特征值问题数值解法
      见代数特征值问题数值解法。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条