1) infinite set
无穷集合
1.
This paper discussed analytical formula of one-to-one correspondence between all irrational number set in(0,1) range and(0,1) range,and consequently came to some conclusions about infinite set.
本文讨论了上的全体无理数所成集合与之间的一一对应解析式,由此得到有关无穷集合的一些结论;并利用结论讨论了全体无理数集合与实数集合的一一对应解析式。
2.
Through a questionnaire test and interviews, the students strategies of comparing the two infinite sets are found to fall into four classes: (1) the two sets are both infinite, therefore they have the same numb.
本文通过测试和访谈,让高学生比较两个无穷(其中一个是另一个的真子集)集合元素的多少,发现: 1、高中生在在比较无穷集合时所用的策略共有四类:①两集合的元素都是无穷多,所以一样多:②两集合的元素都是无穷多,无法比较;③两集合是包含关系,故子集的元素少于全集的元素;④两集合之间存在一一对应关系,因而它们的元素一样多。
2) Infinite Set Theory
无穷集合论
3) Uncountable infinite set
不可数无穷集合
4) countably infinite set
可数无穷集合
1.
Discusses the computational problem about union of countable infinite of countably infinite sets.
讨论了可数无穷个可数无穷集合的并的计算问题。
6) infinite solution set
无穷解集
补充资料:弱无穷维空间
弱无穷维空间
weakly infinite-dimensional space
弱无穷维空间〔we刹y词训te~‘n犯‘田‘匆,ce;cJIa606ec劝。e,。oMepooen一ocTpaHc,」 一个拓扑空间(topologjcal sPace)X,使得对其闭子集偶对的任意无穷系(A,,B‘), A,自B,=沪,i=1,2,…,存在(A与B;之间的)分划(Partition)C,,满足自c=必.不是弱无穷维的无穷维空间称为强无穷维(strongly inl训te dinle比ional)空间.弱无穷维空间也称为A弱无穷维(A一weakly沉肋ited由℃nsional)空间.若在上述定义中,进一步要求c,的某有限子族有空的交集,就得出S弱无穷维空间(S一weak】y顾-nite .dinlensio耐sPace)的概念.【补注】除上述外,A弱就是AneKcaHJIpoB弱(Akk-san山{。vweakly),S弱就是CM即HoB弱(Snurnovweakly).还有一种已经弃之不用的概念Hurewicz弱无穷维空间(Hurewicz一wea脚infin讹一山住r朋io耐space),见综述[AI], 为避免“无穷维空间”这个词的混乱,空间X要求可度量化,见【A2].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条