1) generating function method
母函数方法
2) the parent function method
母函数法
1.
On Fibonacci sequence of the parent function method;
关于Fibonacci序列的母函数法
3) equation for probability generating function
母函数方程
4) atmospheric refraction-mapping function-generator function method
大气折射-映射函数-母函数方法
5) kernel-based methods
核函数方法
1.
Principles of kernel-based methods and two kernel-based statistical modeling techniques are introduced.
介绍了核函数方法的基本原理及两种核函数统计建模方法;提出了用核函数PLS与核函数PCR建立工业丙烯腈生产过程丙烯腈收率软测量模型,以便更有效地处理过程非线性、多输入和数据共线性等复杂特性。
6) penalty function method
罚函数方法
1.
This definition of strong well-posedness is used to study the convergence of a class of penalty function methods.
讨论了它与一类罚函数方法的收敛性关系。
补充资料:弹性力学复变函数方法
用复变函数求解弹性力学问题的方法,主要用于求解平面问题。
在弹性力学平面问题中,基本方程是双调和方程,即ΔΔφ=0,式中Δ为拉普拉斯微分算符,φ是艾里应力函数(见应力函数和位移函数)。将双调和方程表示为复变函数形式,即,式中z=x+iy为复变量;墫为z的共轭,此方程的通解为:
φ=Re[墫ψ(z)+χ(z)],式中ψ(z)、χ(z)为任意解析复变函数;Re表示复变函数实部。所以弹性力学平面问题就归结为求解两个满足用复数表示的弹性力学边界条件的复变函数ψ(z)和χ(z)。对于各向同性材料,平面问题的应力位移与ψ(z)、χ(z)的关系为:
式中σx、σy、τxy为应力分量;i=刧;u、v为位移分量;G为剪切模量(见材料的力学性能);函数上的横线表示复共轭;K为常数。对平面应变问题,K=3-4ν;对平面应力问题,,式中ν为泊松比。
同弹性力学中的实函数方法相比,复变函数方法有如下优点:①实函数解法常常是针对特殊问题寻求一种特殊的应力函数,而复变函数方法具有一般性;②对于多连通域的弹性平面问题,用实函数求解十分困难,而用复变函数方法可以获得一些问题的解析解;③对于位移边值问题及位移和力的混合边值问题,用复变函数方法比用实函数方法容易求解;④可利用保角变换和柯西型积分求出许多边界形状复杂问题的解析解。
用复变函数表示双调和函数是法国的┵.J.B.古尔萨在1898年首先提出的。俄国的Г.В.科洛索夫在1909年将复变函数应用于弹性力学的平面问题。苏联的Н.И.穆斯赫利什维利曾对更为一般的弹性力学平面边值问题进行严格的论证,并建立了完整的弹性力学复变函数方法。他在1933年发表的《数学弹性力学的几个基本问题》一书中发展了平面弹性理论的一般解法,该书获得了很高的评价。20世纪50年代前后,苏联的Г.Н.萨温利用复变函数方法解决了大量的应力集中问题。60年代以后,复变函数方法在线弹性断裂力学中得到广泛的应用和发展,但在解决三维弹性力学问题方面,还存在一定的困难。
在弹性力学平面问题中,基本方程是双调和方程,即ΔΔφ=0,式中Δ为拉普拉斯微分算符,φ是艾里应力函数(见应力函数和位移函数)。将双调和方程表示为复变函数形式,即,式中z=x+iy为复变量;墫为z的共轭,此方程的通解为:
φ=Re[墫ψ(z)+χ(z)],式中ψ(z)、χ(z)为任意解析复变函数;Re表示复变函数实部。所以弹性力学平面问题就归结为求解两个满足用复数表示的弹性力学边界条件的复变函数ψ(z)和χ(z)。对于各向同性材料,平面问题的应力位移与ψ(z)、χ(z)的关系为:
式中σx、σy、τxy为应力分量;i=刧;u、v为位移分量;G为剪切模量(见材料的力学性能);函数上的横线表示复共轭;K为常数。对平面应变问题,K=3-4ν;对平面应力问题,,式中ν为泊松比。
同弹性力学中的实函数方法相比,复变函数方法有如下优点:①实函数解法常常是针对特殊问题寻求一种特殊的应力函数,而复变函数方法具有一般性;②对于多连通域的弹性平面问题,用实函数求解十分困难,而用复变函数方法可以获得一些问题的解析解;③对于位移边值问题及位移和力的混合边值问题,用复变函数方法比用实函数方法容易求解;④可利用保角变换和柯西型积分求出许多边界形状复杂问题的解析解。
用复变函数表示双调和函数是法国的┵.J.B.古尔萨在1898年首先提出的。俄国的Г.В.科洛索夫在1909年将复变函数应用于弹性力学的平面问题。苏联的Н.И.穆斯赫利什维利曾对更为一般的弹性力学平面边值问题进行严格的论证,并建立了完整的弹性力学复变函数方法。他在1933年发表的《数学弹性力学的几个基本问题》一书中发展了平面弹性理论的一般解法,该书获得了很高的评价。20世纪50年代前后,苏联的Г.Н.萨温利用复变函数方法解决了大量的应力集中问题。60年代以后,复变函数方法在线弹性断裂力学中得到广泛的应用和发展,但在解决三维弹性力学问题方面,还存在一定的困难。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条