1) global compactness
全局紧性
1.
Via the variational methods and analytic technique,we prove a global compactnessresult for the singular critical problem-Δu-μ xu 2= u 2x*(ss)-2u+λ u q-2u with Dirichlet boundary condition onΩ.
运用变分方法和分析技巧,证明了带有Dirichlet边界条件的奇异临界问题-Δu-μxu 2=u 2x*(ss)-2u+λu q-2u的一个全局紧性结果。
2) local compactness
局部紧性
1.
The asymptotic properties of l 1 robust identification are studied based on local compactness in l 1 topological space.
基于l1拓扑空间的局部紧性,研究了l1鲁棒辨识的渐近收敛性质,据此提出了一个具体的辨识算法,并讨论了辨识误差的l1范数度量
3) local S*-compactness
局部S*-紧性
1.
The notion of local S*-compactness of L-topological spaces was introduced.
定义了L-拓扑空间的局部S*-紧性,证明了这种局部S*-紧性是L-好的推广,是闭可遗传的,是可乘的,且在连续的、开的、满的L值Zadeh型函数下保持不变。
4) local paracompactness
局部仿紧性
1.
The local paracompactness of L-topological spaces;
L-拓扑空间的局部仿紧性
5) locally S-compactness
局部S紧性
6) locally Seq-compactness
局部Seq紧性
1.
What s more, we discuss the locally Seq-compactness in T2 and regular space.
给出局部Seq紧空间的定义,研究它的刻画与基本性质,证明局部Seq紧性是闭遗传的,是拓扑不变的且被连续开映射及序列完备映射保持;并且讨论T2空间及正则空间中的局部Seq紧性。
补充资料:胎紧浸入和套紧浸入
胎紧浸入和套紧浸入
tight and taut immersions
矍数) 图3 犷鳖{ 图4 称空间A CB的嵌人在Z:同调中为单射的(in-Jeetive),如果对于i)0,诱导同态万.(注,22)~H.(B,22)是单的.令HC=R“是R“中带有超平面边界aH的半空间.例如, H=H:(t)={x“R“:z’(x)簇r}.如果f是一个胎紧浸人,h:是一个非退化的高度函数,那么由Morse理论得到f一’(万:(r))C=M在22同调中是单的.于是由连续性,对任一半空间H这种单性都成立.对于闭流形的光滑浸人,这种半空间性质等价于胎紧性.然而,这种半空间定义也能应用于更大范围的从流形和其他紧拓扑空间到RN中的连续浸人或甚至是映射中去.一个例子是胎紧的“瑞士干酪”,它是一个带边的嵌人曲面,见图5.一个到R中的胎紧映射也称为一个完满函数(详rfect丘inction).公 图5今 图6 对于曲线和闭曲面,半空间性质可导出对任一半空间H,f一’(H)是连通的.它等价于R功ehoff两片性质(R朔chofft场。一pieee pro详rty),即R“中的任一超平面日H将M至多分割成两个连通的片,见图3和图4中的胎紧曲面和图2中的非胎紧曲线. 半空间定义将胎紧性置于经典几何学和凸性理论之中.由于胎紧性在RN中的任意将凸包才(f(M))映到RN内的射影变换下是不变的,因此胎紧性是一个射影性质(见射影几何学(projeetive罗。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条