1) Borel filling discs
Borel充满圆
2) filling discs
充满圆
1.
On the filling discs and Borel directions of quasimeromorphic mapping of zero order;
零级拟亚纯映射的充满圆及Borel方向
2.
Study the properties in Borel directions of infinite order K-quasimeromorphic mapping,and prove the existence of filling discs in Borel directions of infinite order K-quasimeromorphic mapping which generalizes the results of A.
对于平面上无限级K-拟亚纯映射在其Borel方向上的性质进行了研究,证明了无限级K-拟亚纯映射在其Borel方向上一定存在充满圆序列。
3.
We study the properties in Borel directions of K-quasimeromorphic mapping in the planes,and prove the existence of filling discs in Borel directions of positive order(include in-finite) and some zero order K-quasimeromorphic mapping to generalize the results A.
本文对于开平面上K-拟亚纯映射在Borel方向上的性质进行了研究,证明了正级(包括无穷级)和部分零级K-拟亚纯映射在Borel方向上一定存在充满圆序列,推广了A。
3) filling disk
充满圆
1.
According to the definition of K-quasimeromorphic mapping and filling disks,this paper makes a serious exploration analysis of its concept,and has a deep study of K-quasimeromorphic mapping and filling disks,and get a results the muetiple Values of K-quasimero-morphic mapping of the unit disk in the its filling disks.
根据K-拟亚纯映射和充满圆的定义,对其概念认真分析和探讨,对K-拟亚纯映射和充满圆进行了进一步的研究,得到了单位圆内K-拟亚纯映射在其充满圆内的重值的一个结果。
2.
In this paper, with type function and covering surf aces the author dis cusses filling disks and Borel direction of infinite order quasi-meromorphic ma ppings in the complex plane and obtains that a sequence of filling disks decides a Borel direction and there exists a sequence of filling disks in a Borel direc tion.
本文利用型函数、覆盖曲面的方法,讨论了平面上无限级拟亚纯映射的充满圆与Borel方向,得出了充满圆序列决定一条Borel方向,Borel方向上存在充满圆序列。
4) Filling Circle
充满圆
1.
The Sequence of Filling Circle and Borel Direction of K-quasimeromorphic Function;
K-拟亚纯函数的充满圆及其Borel方向
2.
On the Sequence of Filling Circle and Borel Direction of Quasimeromorphic Function;
关于拟亚纯函数的型函数的充满圆及其Borel方向
3.
This paper deals with the filling circle and borel direction of solutions of higher order nonhomogeneous linear differenliad equations with meromorphic function coefficent,and one results of filling circle and borel direction of nonhomogeneous higher order linear differenliad equations is obtained.
研究了亚纯函数系数的高阶非齐次线性微分方程解的充满圆及其Borel方向问题,得到了非齐次高阶线性微分方程解的充满圆及其Borel方向的两个结果。
5) full circles
充满圆
1.
This paper gives the concept of iterated order of quasi-meromorplhic mapping and obtatins that the K-quasi-meromorphic mapping on the plane has full circles and Borel directions,which extend some results.
建立了拟亚纯映射的迭代级的概念,并对于平面上的K-拟亚纯映射,导出了迭代级拟亚纯映射的充满圆与Borel方向,推广了已有结果。
2.
In this paper, we investigate the Borel exceptional values, full circles, and Borel directions of iterated order of meromorphic functions by using the definition of iterated order.
利用亚纯函数的迭代级的概念,研究迭代级亚纯函数的Borel例外值、充满圆及Borel方向,推广了已有的结果。
3.
In chapter 2, we investigate the Borel exceptional values, full circles, and Borel directions of iterated order of meromorphic functions .
第二章,我们证明了迭代级亚纯函数的Borel例外值、充满圆及Borel方向。
6) full circle
充满圆
1.
The K quasi meromorphic mapping of finite positive order on the plane has full circle sequences and Borel dirction,which has been proved by the paper [1] .
对于平面上的K 拟亚纯映射 ,文献[1 ] 里证明了有限正级K 拟亚纯映射必定存在充满圆序列及Borel方向 ;本文进一步证明了对于平面上无穷级K 拟亚纯映射也存在充满圆序列及Borel方
2.
Let f( z )be the K -quasimeromorphic mapping of finite positive order on the plane,then it has full circle sequences.
设f (z)是定义在平面上的有限正级K -拟亚纯映射 ,则f (z)必存在充满圆序列 。
3.
The K quasimeromorphic mapping of finite positive order on the plane have full circle sequences,and it has been proved by paper .
对于平面上的K 拟亚纯映射 ,文献 [1]证明了有限正级K 拟亚纯映射必定存在充满圆序列 ,进一步证明了对于平面上无穷级K 拟亚纯映射也存在充满圆序
补充资料:充满
1.布满;填满。 2.自满;骄傲。 3.充分具有。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条