1) almost sure conditional complete moment convergence
几乎处处条件矩完全收敛
1.
The rates of almost sure conditional complete moment convergence of bootstrap means were considered and its asymptotic behavior was gained;Also the same results for the law of logarithm and iterated logarithm for the moment of bootstrap means were obtained.
考察了再抽样均值的几乎处处条件矩完全收敛的速度,得到了它的精确渐近性,并且对矩对数律和矩重对数律的情形,得到了相同的结果。
2) almost sure convergence
几乎处处收敛
1.
This paper presents some almost sure convergence properties and a strong law of large numbers for the partial sum of associated random variable sequences based on the Hajek-Renyi inequality for associated random variables and the Chung-Erdos inequality for event sequences using the Kronecker lemma and the Borel-Cantelli lemma,which generalize and improve the result in related literature.
文章基于相协随机变量序列的Hajek-Renyi不等式和事件序列的Chung-Erdos不等式,利用Krone-cker引理和Borel-Cantelli引理,给出相协随机变量序列部分和的几乎处处收敛性和强大数定律型的结果,推广和改进了吴爱娟论文中定理2和定理3的结果。
2.
In the paper,we prove an almost sure convergence for the maximum of stationary Gaussion vector sequencs under the conditons rn(p)log n(log log n)1+ε=O(1),rn(p,q)log n(log log n)1+ε=O(1),1≤p≠q≤d.
在rn(p)logn(log logn)1+ε=O(1),rn(p,q)logn(log logn)1+ε=O(1),1≤p≠q≤d的条件下,证明了平稳高斯向量序列最大值的几乎处处收敛。
3.
Complete convergence and Marcinkiewicz’s strong law and almost sure convergence for -mixing random sequences with different distributions are discussed.
讨论了不同分布的混合序列的完全收敛性、Marcinkiewicz强大数律及几乎处处收敛性,并获得了不同分布混合序列满足完全收敛性的一个充分性结果。
3) a.s. convergence
几乎处处收敛
1.
This paper gaves its equivalent propositions and proves that a.
由随机变量序列几乎处处收敛可推出其依概率收敛,进而可推出其依分布收敛,可见判别几乎处处收敛的重要性。
2.
Let B be a separable Banach space, in this thesis, Construct an a.
设B是可分Banach空间,利用截尾方法构造几乎处处收敛的鞅,将鞅方法与分析方法相结合, 研究了B值适应可积随机元序列的局部收敛性及其强大数定理。
3.
We proved the existence of the optimal control in the sense of the long run average of the output tracking errors and a.
在给定条件下,证明了最优控制序列存在,给出了基于扩展截断Kieferwolfowitz(KW)算法的迭代学习控制,证明了迭代序列几乎处处收敛,并使跟踪误差的平方均值最小。
5) fundamental of convergence pseudo-almost everywhere"
伪几乎处处收敛
6) almost everywhere convergence
几乎处处收敛
1.
The paper discusses the relations between complete convergence and almost uniform convergence,almost everywhere convergence,convergence in measure of fathomable functional sequence,and presents two common properties and one decision theorem.
讨论了可测函数序列完全收敛与几乎一致收敛、几乎处处收敛、依测度收敛之间的关系,并给出了它的两个常用性质和一个判定定理。
2.
We introduce the concepts of the convergence in fuzzy measures and the almost everywhere convergence for the sequence of measurable fuzzy valued functions in the general fuzzy measure space in this paper.
在一般模糊测度空间上,针对可测模糊值函数序列给出了依模糊测度收敛和几乎处处收敛的概念,并在此基础上,进一步研究了模糊值函数序列的这两种收敛的蕴涵关系,从而获得了所谓模糊化的Riesz定理和Lebesgue定理。
补充资料:几乎处处收敛
几乎处处收敛
convergence, almost - everywhere
几乎处处收救汇阴理馆en沈,习m渭t一eve。哪he碑;c划q卜MoeT‘no,T“.e犯灯」 见收徽性的类型(convergen优一tyPesof).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条