说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非参数畸变差
1)  non-parametric distortion
非参数畸变差
1.
A new camera calibration method is presented based on completely flat liquid crystal display (LCD) and the interpolation model of digital elevation model (DEM) by finite elements, which belongs to non-parametric distortion calibration model.
提出了一种全自动、基于纯平液晶显示器(LCD)平面格网、非参数畸变差和有限元内插模型的相机标定方法。
2)  distortion coefficients
畸变参数
1.
By using a planar gridding target calibration points could be achieved,and the precision of these calibration points were improved through revising the distortion coefficients of lens according to the principle of cross ratio invariability.
首先利用平面网格靶标来获取标定点,同时利用交比不变原理不断修正镜头的畸变参数,从而提高了标定点的精度,然后根据这些标定点利用RAC算法对视觉传感器的内外参数进行标定。
3)  distortion parameter
畸变参数
1.
In this paper, a definition of distortion parameters for measuring plane quadrilateral element distortion is given.
给出了度量平面四边形单元畸变的畸变参数定义,并证明了畸变参数能用具有明确物理含义的坐标变换多项式系数和雅可比矩阵表示。
4)  distortion parameters
畸变参数
1.
Auto determination of distortion parameters for correction of scanned book image;
书籍扫描图像畸变参数自动计算方法的研究
2.
Based on the distortion model in which the radial geometric distortion is considered as the chief factor,a general correcting method that is independent of interior parameters of the imaging system,is given and discussed in this paper via a detailed analysis of the factors which largely influence the accurate measurement of distortion parameters.
以径向几何畸变为主的非线性几何畸变模型为基础,通过对影响畸变参数测量精度的各种因素的分析,提出了一种不依赖于成像系统内部参数的迭代算法。
3.
The paper present the robust way to find automatically correspondind points and the optimal object function of solving radial distortion parameters.
讨论了基于圆图像序列校对径向畸变参数方法 。
5)  calibration of distortion coefficients
畸变参数标定
6)  Lens distortion parameters
光学畸变参数
补充资料:非参数模型辨识
      利用直接记录或分析系统的输入和输出信号的方法估计系统的非参数模型。所谓非参数模型是指系统的数学模型中非显式地包含可估参数。例如,系统的传递函数、频率响应、脉冲响应、阶跃响应等都是非参数模型。非参数模型通常以响应曲线或离散值形式表示。非参数模型的辨识可通过直接记录系统输出对输入的响应过程来进行;也可通过分析输入与输出的自相关和互相关函数(见相关分析法建模),或它们的自功率谱和互功率谱函数(见频谱分析方法建模)来间接地估计。非参数模型是经典控制理论中常用的描述线性系统的数学模型。传递函数反映输入与输出的拉普拉斯变换在复数域上的响应关系,频率响应反映它们的傅里叶变换在频率域上的响应关系,而脉冲响应和阶跃响应则是在时域上的响应关系。它们从不同的方面反映系统的动态特性。非参数模型比参数化模型直观,辨识非参数模型的方法和计算也比辨识参数化模型的简单。脉冲响应可以用直接记录输入脉冲函数的输出响应的方法来辨识;频率响应也可以直接利用单频正弦输入信号的响应来辨识。但是这种直接辨识方法只能应用于无随机噪声的确定性系统。对于有随机噪声的系统或随机输入信号,必须使用相关分析法或功率谱分析方法。随着快速傅里叶变换仪、伪随机信号发生器和相关仪的问世,辨识系统的非参数模型已变得比较容易。但非参数模型应用于实时控制和适应性控制仍不如参数化模型方便。非参数模型在某些情形下,可以转化为参数模型。例如,如果一个系统的传递函数可以表示为有理分式H(s)=K/(a+s),则系统的模型可以用常微分方程y'+ay=ku表示,a与k为待估计的模型参数,这是参数化模型。又如,对于离散系统的权函数序列(离散脉冲响应序列){hi,i=0,1,...},如果在i充分大(如i>N0),而│hi│充分小时,则模型可以表示为并可用最小二乘法给出有穷权函数序列{hi,i=0,1,...N0}的估计。一般说来,由参数模型容易获得非参数的脉冲响应或频率响应,但由非参数模型化为参数模型则要困难得多。
  
  参考书目
   P.艾克霍夫著,潘科炎、张永光等译:《系统辨识:状态与系统参数估计》,科学出版社,北京,1980。(P.Eykhoff, Systems Identification, Wiley, London,1974.)

  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条