说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> k-严格渐近伪压缩映象
1)  k-strictly asymptotically pseudocontractive mapping
k-严格渐近伪压缩映象
2)  k-strictly asymptotically rseudocontractive mappings
k-严格渐近伪压缩映射
3)  a family of asymptotically k-strict pseudo-contractions Mappings
无限族渐近k-严格伪压缩映象
1.
The purpose of this paper is to propose several modified hybrid projection algorithms and prove several strong convergence theorems for common fixed points of a family of asymptotically k-strict pseudo-contractions Mappings in Hilbert Space.
在H ilbert空间框架下,给出了迭代逼近无限族渐近k-严格伪压缩映象的公共不动点的杂交投影算法,并证明了一个强收敛定理。
4)  strictly asymptotically pseudocontractive mapping
严格渐近伪压缩映象
1.
This paper adopts a new proof method to study the convergence problems of the modified Mann and Ishikawa iterative process with errors for strictly asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings in uniformly convex Banach spaces.
在一致凸的B anach空间中,采用新的证明方法研究了严格渐近伪压缩映象和渐近非膨胀映象带误差的修正的M ann和Ish ikaw a迭代程序的收敛性问题,不要求定义域、值域有界,且迭代系数更简单。
5)  p-strictly asymptotically pseudocontractive mapping
p-严格渐近伪压缩映象
1.
The purpose of this paper is to study the convergence problems of the modified Ishikawa iterative process with errors for p-strictly asymptotically pseudocontractive mappings in p-uniformly convex Banach spaces (1<p<∞), and the boundedness of the domain and range can be dropped.
 在p-一致凸的Banach空间中(1
6)  k-strict pseudo-contraction
k-严格伪压缩映象
1.
A strong convergence theorem for finding the set of solutions of an equilibrium problem and a variational inequality problem,and the set of common fixed point for a family of infinitely k-strict pseudo-contraction mappings in Hilbert spaces was proved.
在Hilbert空间中,给出了寻求平衡问题解集、变分不等式问题解集以及无限族k-严格伪压缩映象的不动点集的公共点的序列,并在适当的条件下证明了该序列强收敛于其公共点。
补充资料:渐近公式


渐近公式
asymptotic formula

  渐近公式}朋yolp肠cl栩.lula二~Irror~绷如甲My月a} 包含符号。,O或等价记号一(函数的渐近相等(as,mPtotiee甲ality))的公式 渐近公式的例f 牡n一丫二一x十口(义舌%*0、 )5戈l+‘)(义‘),、。0;茸、十芜川、一丫’℃一,关二 “(一‘,一下:_于“一笑(7r以)是不超过二的素数的个数,. ‘M,B因脚月撰【补注】关于符号。O和一的意义,例如见阵11或!AZ}.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条