1) generalized quasi-Newton methods
广义拟牛顿算法
1.
We propose a generalized quasi-Newton methods update and prove that methods with Goldstein type line search converges globally.
本文对这个问题做了进一步的研究,对无约束优化问题提出一类新的广义拟牛顿算法,并结合Goldstein线搜索证明了算法对一般非凸目标函数极小化问题的全局收敛性。
2) generalized quasi-Newton method
广义拟牛顿方法
3) Generalized Newton-like method
广义拟牛顿法
4) Generalized Newton method
广义牛顿法
1.
On the basis of this reformulation,it is proved that the system of nonsmooth equations is strongly semismooth so that the generalized Newton method for solving this system possesses locally quadratic convergence.
在此基础上,证明了非光滑方程是强半光滑的,因而解此方程的广义牛顿法具有局部二次收敛性。
5) Newton-GMRES method
牛顿-广义极小残余算法
6) quasi-Newton algorithm
拟牛顿算法
1.
Research on intrusion detection based on the Quasi-Newton algorithm in neural networks;
基于拟牛顿算法优化神经网络的入侵检测研究
2.
It demonstrates that these models possess the unconstrained continuously differentiable minimization formulations and Quasi-Newton algorithm is capable of finding a solution of the model effect.
供应链是一个典型的动态系统,如何协调系统中各成员之间的利益和关系,寻找供应链网络的最终均衡状态,是供应链管理中的一个重要问题,文章首先以变分不等式为工具,介绍了确定性和不确定性需求条件下的供应链网络均衡模型,然后将该类模型转化为非线性互补问题,运用评价函数(meritfunction)将其转化为无约束最优化问题,最后通过拟牛顿算法求解该类模型,有效解决了该类模型的求解问题。
补充资料:潮流计算牛顿—拉夫逊法
潮流计算牛顿—拉夫逊法
load flow Newton-Raphson method
X=(x1,为,…,x.)T其相应牛顿法求解的迭代格式为 F,(X(‘))△万(‘)=一F(X(‘)) X(‘+l)=X(,)+心万(‘)(2)其中f一工了上一不︵d 工J一dlJF‘(X(‘))=a九ax:a几日xZ(3)a人af.a为a几I一才(‘)为函数F(X)的偏导数矩阵,称为雅可比(Jacobi)矩阵.式(2)的第一式,是系数矩阵尸(X(t))和右端项一F(X(’))均已知的线性方程组,称为修正方程,求解后可得修正t△X(t),再通过式(2)的第二式,对变tx(。加以修正.依此类推,直至第k次迭代}}F(X(.))II或】}△万(’)}!小于给定的。时,x川即是方程组(1)的解。 潮流计算牛顿一拉夫逊法是应用数学上的牛顿一拉夫逊法求解电力潮流的方法。 直角坐标的潮流计算基本方程对潮流计算的导纳矩阵墓本方程万九亡一只一jQ 杏‘(i=1,2,…,九)(4)用Y。=汤+jB山,亡,=。+j几代人并展开,可得节点功率平衡方程△只△Q‘一尸‘一e,万(G禹一B.’几) 一五万(G泣人+凡动=一Q‘一关艺(G洒一凡几)0(5) +e,艺(G动人+Boe.,一‘6) 在一l 再补充尸一U节点和U一6节点的节点电压平衡方程 汉少于=U三一(e于+刀)=o(7) 山‘~e,一Uoeos氏=0(8) Of盆=f,一U.,sin6,v=O(9)式中U。,氏已知。 对于电压用极坐标表示的情况,亡一u.e”=U,(c 056.+jsin氏),同样可以导出极坐标形式的平衡方程。 牛顿法的修正方程潮流计算的牛顿法须首先建立式(2)的修正方程.对于潮流计算,每一节点有两个方程,则 、少 n︺ 目.1 了‘、、|父r|J T 、‘矛 F=(F一,F:一,…,Fz、,F2.,…,Fl,,FZ。)T X=(el,f,,…,e、,关,…,e。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条