说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义压缩算子
1)  generalized contraction operator
广义压缩算子
2)  generalized Φ-pseudocontraction
广义Φ-伪压缩算子
3)  generalized strongly successively ψ-hemicontractive operator
广义强一致ψ半压缩算子
1.
In this paper,we study the convergence of modified multi-step Ishikawa iterations with errors for generalized strongly successively ψ-hemicontractive operators.
对广义强一致ψ半压缩算子研究了带误差修正多步Ishikawa迭代的收敛性,并在更弱的条件下得到此迭代收敛到唯一的不动点。
4)  generalized contraction
广义压缩
1.
In 2000,Frigon established a fixed point theorem for generalized contraction in a complete gauge space.
2000年,Frigon在完备的度规空间中建立了一个广义压缩的不动点定理。
5)  generalized operator
广义算子
1.
This paper explores the application of generalized operators modeling in supply chain systems.
探讨广义算子模型在供应链系统研究中的应用。
2.
Nonlinear quantum stochastic differential equations in term of generalized operators and their Wick products are considered.
本文研究广义算子及其Wick积意义下的量子随机微分方程。
6)  generalized quasi-contractive
广义拟压缩
1.
In this paper some convergence theorems of Ishikawa and Mann type iterative sequence with error for generalized quasi-contractive mappings in convex metric spaces are proved.
构造了具误差的Ishikawa和Mann型迭代序列,研究了凸度量空间中广义拟压缩映射的收敛性问题。
补充资料:广义位移算子


广义位移算子
eneralized displacement operators iSt generSarawak* 獴JS

【补注】也见【AZI.如果局部紧群G与紧子群K,(G,K)形成一个reJlb中娜对(Gel’几记pair),则其相应的广义位移算子是可换的.可换超群结构可对应一个依Ja伽俪多项式(Jacobi pol”10而als)的展开与对偶展开.关于产生广义位移算子的Stun旧一Liou认沮e算子类,见【AZ〕.定,则存在H上(唯一的)超群结构,使得广义卷积与M(H)(相应地,D(H),A(H))的乘法相同.代数M(H)(相应地,D(H),A(H))的连续表示可理解为相应的广义位移算子的连续(相应地,无穷次可微、全纯)表示(见[201). 具有对合的B以伯ch超群代数的对称表示理论类似于群的酉表示论.关于交换的与紧的广义位移算子表示的最完整的结果(参看141一【6])已经获得.在一定条件下,H上关于正测度爪可和函数空间Ll(H,间能赋予具有对合的E以nach超群代数的结构.这些条件之一是:测度m在广义位移之下不变(关于各种不同式样的确切定义,参看[4卜!6],f巧卜【l0j).在自然假设下,对于右或左广义位移之下不变的测度,唯一性(确定到一个纯量倍数)也已证明;也有对于这种测度的存在性的充分条件(像超群的紧性,可换性或离散性等条件,见【81,【16]一【18]).然而,关于一般形式的广义位移算子,不变测度的存在性问题仍然未解决(1982).与Ll(H,m)一起,有界变分测度的Ban朋h超群代数与超群C’代数起着重要作用. 欣功ach超群代数及其对称表示已在[4],[6],[8],「巧卜「19」中研究过.关于直线上某些广义位移算子的解析泛函代数已在「9]中进行了研究.对于一般类型的广义位移算子,拓扑超群代数及其表示曾在!20」中考虑过,其中谱分析与谱综合问题是作为超群代数的理想问题来处理的.在【121中,应用超群代数的技巧来解决B.n.Ma叨皿算子方法框架中有关数学物理的问题. 调和分析(恤nl旧n沁al创够is).下述模式揭示了交换广义位移算子的结构(见〔4],〔51).设m,与m:分别是H:与凡上给定的正测度,x(x,y)是定义在H;x从上的函数,.设广义Fo~变换(罗朋扭血目Fou〔哈r加nsfon刃以tion)由 ,(x)巨抑一了,(x)而万)‘,(x)给出,它是Hilbert空间乌(H1,、办与乌喊,mZ)之间的同构.又设反演公式 ,(x)一Jf(力x(x,,)‘2伽)成立.如果测度m:是离散的,则这个公式给出尹(x)依广义Fourler级数(脚e血血目Four屹rse口留)的展开式.如果对某个ee拭与所有y‘从,成立x(e,对=1,则H.还具有超群结构.在此情况下,广义位移算子由公式 ;‘,(x)一ff。)x(k,,)x(x,,)‘2。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条