1) strong essential independent set
强基本独立集
1.
This paper gives a new concept of strong essential independent set, and proves the following theorem: Let k ≥ 2 and let G be a k-connected graph on n vertices such that max{d 1 (x)|x∈ S}≥n/2for every strong essential independent set S on k vertices.
文中给出了强基本独立集的概念,并证明了如下定理:设G是一个具有n个顶点的k-连通图,其中k≥2。
2.
In this paper,we give a new concept of strong essential independent set,and prove the following theorem: Let k≥ 2 and let G be a k-connected claw-free graph on n vertices such that max{d2(x)│x∈S}≥n│2 for every strong essential independent set S on k vertices.
文中给出了强基本独立集的概念,并证明了如下定理:设G是一个具有n个顶点的k-连通无爪图,其中k≥2。
2) strongly independent sets
强独立集
3) essential independent sets
本质独立集
1.
We will present eight sufficient conditions for the existence of hamiltonian cycles in A1,r-free graphs by studying the essential independent sets in a graph and the independent sets in its partially square graph.
本文借助于对图的本质独立集和图的部分平方图的独立集的研究,对无K1,r图中哈密顿圈的存在性给出了八个充分条件。
4) negative independent sample set (NIS)
独立负样本集(NIS)
5) strong independent number
强独立数
1.
This paper studeies the strong independent number and strong chromatic number ofgraphs.
本文研究图的强独立数及强色数问题。
6) independent sets
独立集
1.
On cliques and independent sets;
关于团和独立集的一类极值问题
2.
If d(S)+d(T)≥n+1 for every two strongly disjoint independent sets S and T with |S|=s and |T|=t,then.
本文利用独立集的度和得到如下结果:设s和t是正整数,G是(2s+2t+1)-连通n阶图。
3.
Let G be a graph, for any U■V(G), let N(U)=∪_ (u∈U) N(u),d(U)=│N(U)│, we give two results: Let s and t be two positive integers and G be a (2s+2t+1)-connected graph of order n; If d(S)+d(T)≥n+1 for every two strongly disjoint independent sets S and T with│S│=s and │T│=t, respectively, then G is hamiltonian-connected or 1-hamiltonian.
我们给出了两个结果:设s和t是正整数,G是(2s+2t+1)-连通图,且阶为n;若对于任两个强不交独立集ST,│S│=s,│T│=t ,有d(S)+d(T) ≥n +1 ,则G是哈密尔顿连通的或1-哈密尔顿。
补充资料:基本割集矩阵(见网络图论)
基本割集矩阵(见网络图论)
fundamental cut-set matrix
Jl匕en ge〕1〕日zhen基本割集矩阵(fundamental eut一setnla一trix)见网络图论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条