说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分数微分
1)  fractional derivative
分数微分
1.
The analytical solution of a viscoelastic continuous beam whose damping characteristics are described in terms of a fractional derivative of arbitrary order was derived by means of the Adomian decomposition method.
利用Adomian分解法,得到了由任意阶分数微分描述的具有阻尼特性的黏弹性连续梁的解析解。
2)  fractional-order differential
分数阶微分
1.
Equations between the differential order and the maximum of the fractional-order differential for the specified peak signals are developed based on the variation of the maximum of the specified peak signals at different orders.
首先,利用分数阶微分器获得特定峰信号的分数阶阶微分;然后,利用估计器Ⅰ和估计器Ⅱ提取这些特征峰信号的特征参数。
2.
A fractional-order differentiation filter is designed to obtain fractional-order differential of a given signal and to simplify computation of the fractional-order differential.
设计了一种分数阶微分滤波器。
3)  fractional calculus
分数微积分
1.
An introduction of the definitions of fractional calculus was given.
介绍了分数微积分定义,并运用拉普拉斯变换法证明了分数阶线性常微分方程解的存在性和唯一性,并给出了其传递函数描述和状态方程描述。
2.
In this paper we apply fractional calculus to solve the 3rd order ordinary differential equation of the following form: (z-a)(z-b)(z-c)φ 3+(βz 2+γz+D)φ 2+(α(2β-3α-3)z+αγ+α(α+1)(a+b+c))φ 1+α(α-1)(β-2α-2)φ=f.
依分数微积分定义及Lemma 去解线性三阶常微分方程的特解,若用传统方法( 级数解) 不但繁杂,有时无法求解,因此用分数微积分法求解非常简单快速。
3.
The computational precision is only of first order by using Grünwald-Letnicov fractional calculus definition to approximate fractional differentials/integrals,and thus it can not satisfy the high convergence demand.
利用Gr櫣nwald_Letnicov分数微积分定义计算分数微积分的数值解,计算精度仅为1阶,不能满足快速收敛性要求。
4)  fractional differential
分数阶微分
1.
Image enhancement for rock fractures based on fractional differential
基于分数阶微分的岩石裂隙图像增强
2.
The theoretical analysis shows that fractional differentials can greatly increase high frequency,reinforce medium frequency and non-linearly preserve low frequency of signals,hence they could be used for edge and texture enhancement as well as smooth area preservation.
通过理论分析得出分数阶微分可以大幅提升信号高频成分,增强信号的中频成分、非线性保留信号的甚低频,据此得出分数阶微分应用于图像增强将使图像边缘明显突出、纹理更加清晰和图像平滑区域信息得以保留的增强图像;然后由经典的分数阶微分定义出发,推导出了分数阶差分方程,构建了近似的Tiansi微分算子。
3.
In order to improve signal noise ratio(SNR) of edge extraction,and to detect edge more effectively and exactly,according to fractional order differential difference function which was deduced from classical fractional differential G-L definition,an approximate fractional order differential Tiansi module was constructed.
为了提高图像边缘提取的信噪比,更有效和准确检测图像边缘,由信号的微分特性得出分数阶微分算子较传统1阶和2阶微分算子具有更高的信噪比,然后根据经典的G-L分数阶微分定义推导出的分数阶差分方程,构建了近似的分数阶Tiansi模板。
5)  fractional derivative
分数阶微分
1.
We examine the properties and applications of the Riemann fractional integral and derivative,and give the new definitions of left-sided fractional derivative and right-sided fractional derivative.
对一类函数的积分运算进行了讨论,获得了Riemann型分数阶微积分的一些有趣结果,并给出了函数左、右分数阶微分和积分的定义,相应地给出了函数的分数阶微分和积分的性质以及分形函数的图像。
2.
In this paper,we extend the total variation model for image denoising is which based on gradient to a new model based on fractional derivative,and then making use of the characteristic that fractional derivative and convolution integral have the same discrete formula in certain situation,We propose a variational model based on convolution integral which can be computed easily.
将基于梯度的总变分图像去噪模型推广到基于分数阶微分的模型,并根据分数阶微分与卷积运算在特殊情形下具有相同的离散格式这一特点,提出了一种易于数值计算的基于卷积积分的图像去噪变分模型,实验结果表明,新模型在提高图像信噪比的同时,可以更好地保持图像的细节信息。
6)  fractal differentiation
分数维微分
补充资料:分数阶积分与微分


分数阶积分与微分
og fractional integration and differentia-

分数阶积分的逆运算称为分数阶微分:若几介F,则f为F的:阶分数阶导数(na ctional deriVative).若0<戊0: ;、一上一f一工鱼一一添 r回几恤一t)’-(对f给予适当的限制;见!IL那里还包含算子人关于乌的估计). 下列定义(H.研几yl,1917)对可积的具有2二周期并在周期上具零均值的函数是方便的.设 f(x,一{采0cn“‘”’一艺‘、“‘”’,则f的以:>0)阶叭几贝积分(W亡ylintegl司)用式 ,,eC才月x 了_IX】~Z—!乙l 气!n)-定义;并且斑吞>0)阶导数尸用方程 d” fp(x)“~子二天一,(x) v一了dx”护”一户v,定义,这里n是大于刀的最小整数(应注意天(x)与几f(x)重合). 这些定义在广义函数论的框架中有进一步的发展.对周期的广义函数 f一艺‘毕切·分数阶积分灯=人的运算可据式(2)对一切实值:实现(若仪为负的,人f与“阶偏导数一致)且有关于参数“的半群性质. 在n维空间X中分数阶积分运算的类似式为R免业位势(Riesz potential;或俘挚掣积分恤把脚!of poten-tjal tyPe)) 。,,、,_.。r((n一“、/2、rf(x、 八_I《Xl二兀一t‘今-二一二言~一二二一‘二.--~‘‘戈二‘~dt T’t以j乙)竺}X一艺r” ‘、,,X凡的逆运算称为“阶Riesz导数(Riesz derivati记).分数阶积分与微分l云.西加目如吻阳‘刃翻日由场,曰血-肠即;八p浦姗。HT即.脚.翻.比。月.中中epe。朋.碑旧曰皿e],亦称分数次积分与微分 积分与微分运算到分数阶情形的推广,设f为区间[a,bl上可积函数,并设I汀(x)为f在la,x]上的积分,而嵘f(x)为此_、f(x)在ta,xl上的积分.,=2,3,…,那么有 ,。子‘。=~二一亡‘一犷,r‘八月,。、Y、、门、 卫_1 IX,一—1 IX一f,I吸tl“不.“浇无受D,111 IL“)了其中r间‘恤一I)!为r函数(手mi刀以丘山ctlon).上式右边对每个戊>0都有意义.等式(l)定义了f以a为始点的:阶分数阶积分(n习ctionalin噢州)或RI曰m以nn-Liou喇沮e积分(R~一Liou祖le int叩户1).对于复值参数:,算子叮被B.R记n艾Ir田(l时7)研究过,算子I:是线性的且有半群性质: 程「瑙(x)]二I:+,f(x).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条