2) Mayer cluster expansions
Mayer集团展开法
1.
Through the classical Mayer cluster expansions,we can make the first approximation to the interaction potential and the 2-Cluster expansion to the system.
水在临界状态下有着与标准状态明显不同的行为,通过经典Mayer集团展开法对相互作用势能作一级近似,对系统作2—Cluster展开,采用简化L-J势分析水蒸汽分子系统的配分函数,进而讨论系统的热力学函数。
3) Cluster expansion
集团展开
1.
The expression of free energy is deduced by the method of cluster expansion.
利用“集团展开”方法 ,导出了系统的自由能 ;采用Zwanzig方法 ,得到序参量的自洽方程 ,系统的状态方程及所得转变温度TNI与L 。
2.
Basical idea and method of the classical and quantum cluster expansion is reviewed.
简要的回顾了经典集团展开、量子集团展开的基本方法与思路,并利用求几率密度的方法计算了第二维里系数,得出一般的计算公式;作为具体应用计算了无自旋的刚球位势模型的费米子、玻色子的第二维里系数,最后和一般的相位移方法作了比较。
3.
The partition functions,Virial c oefficient and internal energy are calculated by using cluster expansion method.
将电解质溶液简化为带有LJ位能的离子—偶极混合物,用集团展开方法计算了溶液的位形配分函数,得到了混合物的第二维里系数和内能。
4) virial expansion
集团展开
1.
The expression of partial function for Hard sphere system is obtained by using higher term virial expansion method.
利用三阶集团展开方法 ,求出二元系统配分函数的表达式。
6) kai yuan group
开源集团
补充资料:集团展开
即通过计算配分函数求得级数形式的物态方程,用以描述实际气体的一个常用的有效方法。这种方法是由H.D.乌泽耳以及J.E.迈尔夫妇等人建立和发展起来的,它适用于温度不太低或密度不太高的气体系统。
运用集团展开的方法,可把实际气体的压强p展成密度ρ的幂级数,而幂级数的各个系数用位形空间中的某些积分来表示。
对于粒子间存在相互作用的系统,使用统计方法时最主要的是要计算巨配分函数 中的位形积分式中称为经典易逸度,μ是化学势,k和 h分别是玻耳兹曼常数和普朗克常数,T是热力学温度,UN是N个粒子系统的总势能,uij是两个粒子之间的相互作用势能。当粒子之间的距离rij →∞时,uij比更快地趋于零,而exp(-uij/kT)则变为1。
引入迈尔函数fij:fij=f(rij)=exp(-uij/kT)-1,
可得:
式中包含了很多项,非常繁复,采用图示法讨论较方便:用圆圈中加数字表示某个粒子,无直线联结的就表示数值1,两圆圈连一直线就表示fij因子,与若干直线对应的是若干个因子fij的积。
例如当N=3时,exp(-U3/kT)的图示法是
对于N个粒子,把相应的乘积开展,会有许多项。在N个点之间不论用直线或不用直线相联,都称为一个图形,exp(-UN/kT)的展开式中的每一项都可以画出相应的图形。在图形中任一点同其他点有直接或间接直线相联的就为一集团。这样,每个集团对应于因子积。每个图形由一个集团或若干个集团组成。exp(-UN/kT)展开式中的每一项都对应于把代表N个粒子的N个点以一定方式分组为若干个集团,若在某种分组中,一个点的集团有m1个,二个点的集团有m2个,...l个点的集团有ml个等等,所有这些ml应满足关系
于是,exp(-UN/kT)是同所有满足此式的分组所对应的图形的和。由于各个 l个点的集团中联线不同,因此每个exp(-Ul/kT)中还包含若干项,它可表示为同时每个exp(-Ul/kT)对Л个粒子坐标的积分是相同的。由于每一Л点的集团中的Л个粒子可从N个粒子中任选,排列组合满足上式的固定一套{ml}分组的分法共有
种。因此,若定义集团积分bl为
则可求在固定一套分组{ml}下,对位形积分的贡献:
而得到:
可见,在研究非理想气体时,可把p/kT按粒子数密度ρ展成级数,其中各个系数称为各级维里系数。这个方法同样可以运用于粒子间相互作用多于两体的情形。
此外,B.卡恩和G.E.乌伦贝克建立了量子统计力学的集团展开法。
参考书目
J.梅逸、M.G.梅逸著,陈成琳等译:《统计力学》,高等教育出版社,北京,1957。(J.Mayer and M.G.Mayer,Statistical Mechanics,Wiley, New York,1946.)
Kerson Huang,Statistical Mechanics, John Wiley & Sons,New York, London,1963.
运用集团展开的方法,可把实际气体的压强p展成密度ρ的幂级数,而幂级数的各个系数用位形空间中的某些积分来表示。
对于粒子间存在相互作用的系统,使用统计方法时最主要的是要计算巨配分函数 中的位形积分式中称为经典易逸度,μ是化学势,k和 h分别是玻耳兹曼常数和普朗克常数,T是热力学温度,UN是N个粒子系统的总势能,uij是两个粒子之间的相互作用势能。当粒子之间的距离rij →∞时,uij比更快地趋于零,而exp(-uij/kT)则变为1。
引入迈尔函数fij:fij=f(rij)=exp(-uij/kT)-1,
可得:
式中包含了很多项,非常繁复,采用图示法讨论较方便:用圆圈中加数字表示某个粒子,无直线联结的就表示数值1,两圆圈连一直线就表示fij因子,与若干直线对应的是若干个因子fij的积。
例如当N=3时,exp(-U3/kT)的图示法是
对于N个粒子,把相应的乘积开展,会有许多项。在N个点之间不论用直线或不用直线相联,都称为一个图形,exp(-UN/kT)的展开式中的每一项都可以画出相应的图形。在图形中任一点同其他点有直接或间接直线相联的就为一集团。这样,每个集团对应于因子积。每个图形由一个集团或若干个集团组成。exp(-UN/kT)展开式中的每一项都对应于把代表N个粒子的N个点以一定方式分组为若干个集团,若在某种分组中,一个点的集团有m1个,二个点的集团有m2个,...l个点的集团有ml个等等,所有这些ml应满足关系
于是,exp(-UN/kT)是同所有满足此式的分组所对应的图形的和。由于各个 l个点的集团中联线不同,因此每个exp(-Ul/kT)中还包含若干项,它可表示为同时每个exp(-Ul/kT)对Л个粒子坐标的积分是相同的。由于每一Л点的集团中的Л个粒子可从N个粒子中任选,排列组合满足上式的固定一套{ml}分组的分法共有
种。因此,若定义集团积分bl为
则可求在固定一套分组{ml}下,对位形积分的贡献:
而得到:
可见,在研究非理想气体时,可把p/kT按粒子数密度ρ展成级数,其中各个系数称为各级维里系数。这个方法同样可以运用于粒子间相互作用多于两体的情形。
此外,B.卡恩和G.E.乌伦贝克建立了量子统计力学的集团展开法。
参考书目
J.梅逸、M.G.梅逸著,陈成琳等译:《统计力学》,高等教育出版社,北京,1957。(J.Mayer and M.G.Mayer,Statistical Mechanics,Wiley, New York,1946.)
Kerson Huang,Statistical Mechanics, John Wiley & Sons,New York, London,1963.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条