说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 均值标杆
1)  mean benchmark
均值标杆
2)  mean value coordinates
均值坐标
1.
To promote the efficient reuse of existing animation resources,an approach for transferring 3D animation from a source mesh to a target mesh based on mean value coordinates is proposed.
为了重用已有动画资源,提出一种基于均值坐标的三维动画传输方法。
3)  mean value specification
均值指标
4)  the average value of index
指标均值
5)  sub-maximum benchmark
次大值标杆
1.
So the authors propose the sub-maximum benchmark and test and compare its effectiveness .
提出了基于次大值标杆策略的设想,通过理论求解以及仿真实验的方法研究了该策略的特征与规律。
2.
We propose the alternative sub-maximum benchmark,and find that the decreasing benchmark corresponds to the increasing magnitude of the sampled applicants on the ground of the maximized winning probabili.
该策略的优点是能保证命中概率最大,然而其不足是很少考虑决策者的有限理性与启发式偏见,因此本文提出了次大值标杆的设想,然后从理论上计算出该策略的最优截止阀值与命中概率,并通过计算机仿真实验验证与比较了该策略的特征与规律。
6)  mean value coordinates
平均值坐标
1.
The irrational function forms interpolation on a polygonal element with arbitrary nodal distribution was constructed by using mean value coordinates of polygonal elements.
本文采用多边形单元的平均值坐标,构造任意节点分布的多边形单元无理函数形式的插值函数,提出了一种求解微分方程边值问题的多边形有限元方法。
2.
In this paper,using mean value coordinates of polygon in computer graphics,the mean value interpolation method setting vertexes of polygon as interpolating nodes is presented.
采用计算机图形学中的多边形平均值坐标,构造出以多边形顶点为插值节点的无理函数插值方法。
补充资料:均值不等式

几个重要不等式(一)

一、平均值不等式

设a1,a2,…, an是n个正实数,则,当且仅当a1=a2=…=an时取等号

1.二维平均值不等式的变形

(1)对实数a,b有a2+b2³2ab          (2)对正实数a,b有

(3)对b>0,有,   (4)对ab2>0有,

(5)对实数a,b有a(a-b)³b(a-b)                (6)对a>0,有

(7) 对a>0,有                   (8)对实数a,b有a2³2ab-b2

(9) 对实数a,b及l¹0,有

二、例题选讲

例1.证明柯西不等式

证明:法一、若或命题显然成立,对¹0且¹0,取

代入(9)得有

两边平方得

法二、,即二次式不等式恒成立

则判别式

例2.已知a>0,b>0,c>0,abc=1,试证明:

(1)

(2)

证明:(1)左=[]

=

³

(2)由知

同理:

相加得:左³

例3.求证:

证明:法一、取,有

a1(a1-b)³b(a1-b), a2(a2-b)³b(a2-b),…, an(an-b)³b(an-b)

相加得(a12+ a22+…+ an2)-( a1+ a2+…+ an)b³b[(a1+ a2+…+ an)-nb]³0

所以

法二、由柯西不等式得: (a1+ a2+…+ an)2=((a1×1+ a2×1+…+ an×1)2£(a12+ a22+…+ an2)(12+12+…+12)

=(a12+ a22+…+ an2)n,

所以原不等式成立

例4.已知a1, a2,…,an是正实数,且a1+ a2+…+ an<1,证明:

证明:设1-(a1+ a2+…+ an)=an+1>0,

则原不等式即nn+1a1a2…an+1£(1-a1)(1-a2)…(1-an)

1-a1=a2+a3+…+an+1³n

1-a2=a1+a3+…+an+1³n

…………………………………………

1-an+1=a1+a1+…+an³n

相乘得(1-a1)(1-a2)…(1-an)³nn+1

例5.对于正整数n,求证:

证明:法一、

>

法二、左=

=

例6.已知a1,a2,a3,…,an为正数,且,求证:

(1)

(2)

证明:(1)

相乘左边³=(n2+1)n

证明(2)

左边= -n+2(

= -n+2×[(2-a1)+(2-a2)+…+(2-an)](

³ -n+2×n

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条